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On peut donc dire que la notion de topos, dérivé naturel du point
de vue faisceautique en Topologie, constitue à son tour un élargissement
substantiel de la notion d’espace topologique, englobant un grand nom-
bre de situations qui autrefois n’étaient pas considérées comme relevant
de l’intuition topologique. Le trait caractéristique de telles situations est
qu’on y dispose d’une notion de « localisation », notion qui est formalisée
précisément par la notion de site et, en dernière analyse, par celle de topos
(via le topos associé au site). Comme le terme de « topos » lui-même est
censé précisément le suggérer, il semble raisonnable et légitime aux au-
teurs du présent Séminaire de considérer que l’objet de la Topologie est
l’étude des topos (et non des seuls espaces topologiques).

—A. Grothendieck and J.-L. Verdier, SGA 4





Topology of Statistical Systems: A Cohomological Approach to Information
Theory

Abstract

This thesis extends in several directions the cohomological study of informa-
tion theory pioneered by Baudot and Bennequin. We introduce a topos-theoretical
notion of statistical space and then study several cohomological invariants. Infor-
mation functions and related objects appear as distinguished cohomology classes;
the corresponding cocycle equations encode recursive properties of these functions.
Information has thus topological meaning and topology serves as a unifying frame-
work.

Part I discusses the geometrical foundations of the theory. Information struc-
tures are introduced as categories that encode the relations of refinement between
different statistical observables. We study products and coproducts of information
structures, as well as their representation bymeasurable functions or hermitian oper-
ators. Every information structure gives rise to a ringed site; we discuss in detail the
definition of information cohomology using the homological tools developed by Artin,
Grothendieck, Verdier and their collaborators.

Part II studies the cohomologyofdiscrete randomvariables. Information functions—
Shannonentropy, Tsallis α-entropy, Kullback-Leiblerdivergence—appear as1-cocycles
for appropriate modules of probabilistic coefficients (functions of probability laws).
In the combinatorial case (functions of histograms), the only 0-cocycle is the exponen-
tial function, and the 1-cocycles are generalized multinomial coefficients (Fontené-
Ward). There is an asymptotic relation between the combinatorial and probabilistic
cocycles.

Part III studies in detail the q-multinomial coefficients, showing that their growth
rate is connected to Tsallis 2-entropy (quadratic entropy). When q is a prime power,
these q-multinomial coefficients count flags of finite vector spaces with prescribed
length and dimensions. We obtain a combinatorial explanation for the nonadditivity
of the quadratic entropy and a frequentist justification for the maximum entropy
principle with Tsallis statistics. We introduce a discrete-time stochastic process as-
sociated to the q-binomial probability distribution that generates finite vector spaces
(flags of length 2). The concentration of measure on certain typical subspaces allows
us to extend Shannon’s theory to this setting.

Part IV discusses the generalization of information cohomology to continuous
random variables. We study the functoriality properties of conditioning (seen as
disintegration) and its compatibility with marginalization. The cohomological com-
putations are restricted to the real valued, gaussian case. When coordinates are fixed,
the 1-cocycles are the differential entropy as well as generalized moments. When
computations are done in a coordinate-free manner, with the so-called grassmannian
categories, we recover as the only degree-one cohomology classes the entropy and the
dimension. This constitutes a novel algebraic characterization of differential entropy.

Keywords: information cohomology, topos theory, information theory, entropy,
multinomial coefficients, type theory, sheaves, nonextensive statistics



Topologie des systèmes statistiques : une approche cohomologique à la théorie
de l’information

Résumé

Cette thèse étend dans plusieurs directions l’étude cohomologique de la théorie de
l’information initiée par Baudot et Bennequin. On introduit une notion d’espace
statistique basée sur les topos, puis on étudie plusieurs invariants cohomologiques.
Les fonctions d’information et quelques objets associés apparaissent comme des
classes de cohomologie distinguées ; les équations de cocycle correspondantes codent
les propriétés récursives de ces fonctions. L’information a donc une signification
topologique et la topologie sert de cadre unificateur.

La première partie traite des fondements géométriques de la théorie. Les struc-
tures d’information sont présentées sous forme de catégories qui codent les relations
de raffinement entre différents observables statistiques. On étudie les produits et co-
produits des structures d’information, ainsi que leur représentation par des fonctions
mesurables ou des opérateurs hermitiens. Chaque structure d’information donne
lieu à un site annelé ; la cohomologie de l’information est introduite avec les outils
homologiques développés par Artin, Grothendieck, Verdier et leurs collaborateurs.

La deuxième partie étudie la cohomologie des variables aléatoires discrètes. Les
fonctions d’information — l’entropie de Shannon, l’α-entropie de Tsallis, et la diver-
gence de Kullback-Leibler — apparaissent sous la forme de 1-cocycles pour certains
modules de coefficients probabilistes (fonctions de lois de probabilité). Dans le cas
combinatoire (fonctions des histogrammes), le seul 0-cocycle est la fonction exponen-
tielle, et les 1-cocycles sontdes coefficientsmultinomiauxgénéralisés (Fontené-Ward).
Il existe une relation asymptotique entre les cocycles combinatoires et probabilistes.

La troisième partie étudie en détail les coefficients q-multinomiaux, en montrant
que leur taux de croissance est lié à la 2-entropie de Tsallis (entropie quadratique).
Lorsque q est une puissance première, ces coefficients q-multinomiaux comptent les
drapeaux d’espaces vectoriels finis de longueur et de dimensions prescrites. On
obtient une explication combinatoire de la non-additivité de l’entropie quadratique
et une justification fréquentiste du principe demaximisation d’entropie quadratique.
On introduit un processus stochastique à temps discret associé à la distribution de
probabilité q-binomial qui génère des espaces vectoriels finis (drapeaux de longueur
2). La concentration de la mesure sur certains sous-espaces typiques permet d’étendre
la théorie de Shannon à ce cadre.

La quatrième partie traite de la généralisation de la cohomologie de l’information
aux variables aléatoires continues. On étudie les propriétés de fonctorialité du con-
ditionnement (vu comme désintégration) et sa compatibilité avec la marginalisation.
Les calculs cohomologiques sont limités aux variables réelles gaussiennes. Lorsque
les coordonnées sont fixées, les 1-cocycles sont l’entropie différentielle ainsi que les
moments généralisés. Les catégories grassmanniennes permettent de traiter les cal-
culs canoniquement et retrouver comme seuls classes de cohomologie de degré 1
l’entropie et la dimension. Ceci constitue une nouvelle caractérisation algébrique de
l’entropie différentielle.

Mots-clés: cohomologie de l’information, théorie des topos, théorie de l’information,
entropie, coefficients multinomiaux, théorie des types, faisceaux, statistique nonex-
tensive
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Introduction

0.1 Axiomatic characterizations of entropy

In his seminal paper on themathematical foundations of communication [78], Claude
Shannon proposed the following axiomatic characterization for a ‘measure of choice’:

Suppose we have a set of possible events whose probabilities of oc-
currence are p1 , p2 , · · · , pn . These probabilities are known but that is all
we know concerning which event will occur. Can we find a measure of
how much “choice” is involved in the selection of the event or of how
uncertain we are of the outcome?

If there is such measure, say H(p1 , p2 , · · · , pn), it is reasonable to
require of it the following properties:
1. H should be continuous in the pi .
2. If all the pi are equal, pi �

1
n , then H should be a monotonic increas-

ing function of n. Whith equally likely events there is more choice,
or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H. The
meaning of this is illustrated [in Figure 1]. At the left we have three
possibilities each with probabilities 2

3 ,
1
3 . The final results have the

same probabilities as before. We require, in this special case, that

H(1
2
,

1
3
,

1
6
) � H(1

2
,

1
2
) + 1

2
H(2

3
,

1
3
)

The coefficient 1
2 is because this second choice only occurs half the

time.

Then he proved:

Theorem 0.1 (Shannon). The only H satisfying the assumptions above is of the form

H(p1 , ..., pn) � −K
n∑

i�1
pi log pi , (0.1)

where K is a positive constant.

The function H is called entropy, sometimes preceded by the names of Shannon
or Gibbs.
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1/6

1/2
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2/3

1/3

1/3

1/6

Figure 1: Decomposition of a choice from three possibilities. Figure 6 in [78].

These and analogous axioms have been taken traditionally as intuitive, natural
or expected properties of information itself or other related concepts. However,
several questions could (and should) be raised: What does “natural” mean in this
context? Which “intuitions” are we talking about? What is our mental picture of
information or even probabilities? These questions are rather philosophical, but
they can be clarified answering first a mathematical one: What is the specific role
that these axioms play in information theory? Maybe the situation is similar to
axiomatizations of geometry: Euclid’s fifth postulate makes sense and seems quite
natural, but meaningful theories can be built without it.

Information theory and statistical mechanics make use of several generalizations
of entropy that do not satisfy the third axiom. For example, in 1967 Jan Havrda and
František Charvát [38] introduced the structural α-entropy: for α > 0, α , 1, it is
given by the formula

Sα(p1 , ..., pn) � Kα

(
n∑

i�1
pαn − 1

)
, (0.2)

where Kα is some constant chosen in such away that Sα → S1 :� H when α→ 1 [22].
It was characterized as the only function satisfying certain axioms, including one
analogous to axiom 3 above where the probabilities in front of each H were raised to
thepower α, cf. (0.11). These α-entropieswerepopularized inphysics byConstantino
Tsallis [87,88], that uses them as a foundation for nonextensive statistical mechanics.
As a consequence, the most common name for Sα is Tsallis α-entropy.

It is important to elucidate the relation between these axiomatic characterizations
of information functions and their applications in information theory and statistical
mechanics, that usually involve combinatorial or probabilistic reasoning. Shannon
says:

[Theorem 0.1], and the assumptions required for its proof, are in no way
necessary for the present theory. It is given chiefly to lend a certain
plausibility to some of our later definitions. The real justification of this
definitions, however, will reside in their implications.

We could be tempted to dismiss completely the axiomatic approach, which is not so
far from Kolmogorov’s position [52, p. 42]:

The deduction of limiting theorems of the type indicated above has been
carried out in many remarkable papers [...] We feel that much must still
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be done in this direction. [...] Since by its original nature “information”
is not a scalar magnitude, we feel that the axiomatic study allowing
to characterize [the mutual information] I(ξ, η) uniquely (or uniquely
characterize the entropy H(ξ)) bymeans of simple formal properties have
in this respect a lesser importance. Here we believe that the situation is
similar to the one related to the fact that of all the methods for obtaining a
foundation of the normal distribution law for errors proposed by Gauss,
todaywe favour themethods based on limiting theorems for sum of large
numbers of small summands. Other methods (for example, the method
based on the arithmetical mean) only explains why no other distribution
lawof errors canbe aspleasant and convenient as thenormal one, butdoes
not answer the questionwhy the normal distribution law so often appears
in real problems. Exactly in the same way, the beautiful properties of the
expressions H(ξ) and I(ξ, η) cannot explain why they suffice in many
problems for finding a complete solution (at least from the asymptotical
point of view).

In any case, the algebraic properties of entropy and the normal law are remark-
able enough to be mentioned, and there is more to them than beauty. For example,
Linnik [59] gave a (complicated) information-theoretic proof of theCentral Limit The-
orem (later improved and clarified, see [9]), so the limiting properties of the normal
distribution are not independent from the fact that it maximizes the entropy when
the mean and variance are fixed. In turn, this information-maximization property
is a bridge to establish connections between the remarkable algebraic properties of
entropy on the one hand and of normal distributions on the other.

It seems to us that the connections between the different points of view on
entropy—algebraic, probabilistic, combinatorial, dynamical—are still poorly under-
stood. This constitutes a first motivation to introduce the categorical framework of
Section 0.5 as a formalism general enough to integrate different theories.

0.2 Functional equations

Let us come back to Shannon’s axiomatization: it refers to a set of possible events,
but those events do not appear in the notation. It would bemore precise to introduce
a random variable (or “random object” or “experiment”) X, that can take values in a
finite setEX . Aprobability law is a functionP : EX → [0, 1] such that

∑
x∈EX P(x) � 1.1

Then the Shannon entropy associated to the random variable X and the law P is2

S1[X](P) � −K
∑

x∈EX

P(x) log P(x). (0.3)

1Strictly speaking, the probability law is a measure ρ on the algebra of subsets of EX such that∫
EX

dρ � 1 and P is its density with respect to the counting measure, but here we are identifying both
things, as is customary. The distinction becomes important in Section 0.8.

2We reserve the character H for (co)homology, so we follow other texts in statistical mechanics (e.g.
Tsallis’ book [88]) denoting the entropy by S.
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Entropy already appears in this form in Shannon’s paper, just after the axiomatiza-
tion. Similarly, the α-entropy is

Sα[X](P) � Kα

( ∑
x∈EX

P(x)α − 1

)
. (0.4)

Consider now two random variables X and Y, valued in sets EX and EY , re-
spectively. The joint measurement, represented as a vector (X,Y), is also a ran-
dom variable (joint variable), whose possible values belong to certain subset EXY
of EX × EY . Suppose that a law P on EXY is given; following Shannon, it can be
represented by a tree as in Fig. 2-(a). The probability of observing X � x is com-
puted as the sum of all the outputs of (X,Y) that contain x in the first component:
X∗P(x) :� P(X � x) � ∑

(x ,y)∈EXY
P(x , y). This defines a probability X∗P on EX , usu-

ally called “marginal distribution”. Instead of measuring directly (X,Y) one could
measure first X, which constitutes a first random “choice”, and then update the prob-
abilities on EXY taking into account this first result: probability represents uncertain
knowledge about the “true value” of (X,Y), that is updated each time ameasurement
is performed. Only the pairs in {(x0 , y)}y∈Y are compatible with X � x0; therefore,
the conditional probability law P |X�x0 : EX → [0, 1], that represents the uncertainty
after obtaining the result X � x0, is defined by

P |X�x0(x , y) �
{

P(x ,y)
X∗P(x0) if x � x0

0 otherwise
. (0.5)

This iterated choice/measurement can in turn be represented as a tree, e.g. Fig. 2-(b).
According to Shannon’s third axiom, the “chain rule”

S1[(X,Y)](P) � S1[X](X∗P) +
∑

x∈EX

X∗P(x)S1[Y](Y∗P |X�x) (0.6)

must hold. Similarly, if the measurement of Y is performed first, we obtain another
tree, Fig. 2-(c), that entails the equation

S1[(X,Y)](P) � S1[Y](Y∗P) +
∑
y∈EY

Y∗P(y)S1[X](X∗P |Y�y) (0.7)

It turns out that (0.6) and (0.7), taken as a system of functional equations with
measurable unknowns S1[X], S1[Y], and S1[(X,Y)], imply that each of these functions
must be the corresponding Shannon entropy defined by (0.3). This is true even for
the situation pictured in Fig. 2, that is evidently the simplest possible choice that can
be broken down in two different ways (see Proposition 3.10).

Tverberg [89] was the first to deduce a simple functional equation from the third
axiom, nowadays called “fundamental equation of information theory”:

f (x) + (1 − x) f
( y

1 − x

)
� f (y) + (1 − y) f

(
x

1 − y

)
, (0.8)

where f : [0, 1] → R is an unknown function, and x , y ∈ [0, 1] are such that x +

y ∈ [0, 1]. The only symmetric, measurable solutions of this equation are the real
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p00

p01

p11

(a)

p00 + p01

p00
p00+p01

p01
p00+p01

p11

1

(b)

p00

1

p01 + p11

p01
p01+p11

p11
p01+p11

(c)

Figure 2: Different goupings when EX � EY � {0, 1} and EXY � {(0, 0), (0, 1), (1, 1)}. We
denote by pi j the probability of the point (i , j) ∈ EXY . In (b) and (c), the probabilities to the
left are the marginals X∗P and Y∗P, respectively, and those to the right are the conditional

laws on the appropriate subset of EXY .

multiples of s1(x) :� −x ln(x) + (1 − x) ln(x) [57]. Daroczy [25] proposed a similar
equation solved by the α-entropy sα(x) :� xα + (1 − x)α − 1. 3

The situation is already quite striking, because Shannon’s characterization asks
for an infinite number of conditions—certain equations for any set of events and
any possible grouping of them—along with strong regularity of the functions H (an
infinite family indexed by n), and actually just one set, two different groupings, and
measurability of the unknowns are enough to reach the same conclusion. Maybe
this would only be a nice mathematical curiosity, if these chain-rule-like functional
equations did not accept a much deeper interpretation. Let us define,4 for any
probabilistic functional P 7→ f (P), a new functional X. f given by

(X. f )(P) :�
∑

x∈EX

X∗P(X) f (Y∗P |X�x). (0.9)

in order to rewrite (0.6) as

0 � X.S1[Y] − S1[(X,Y)] + S1[X]. (0.10)

The notation is meant to suggest an action of random variables on probabilistic
functionals, and in fact the equality Z.(X. f ) � (Z,X). f holds. There is an strong
resemblance between (0.10) and a cocycle equation in group cohomology. Baudot
and Bennequin [10] formalized this analogy: it is possible to use the general con-
structions of homological algebra to recover the equations (0.10) as cocycle conditions
in an adapted cohomology theory that they called information cohomology. Since the
entropy is the their only solution, the argument constitutes an alternative character-
ization of entropy. This description is not axiomatic, but algebro-geometrical: it has a

3For a detailed historical introduction and a comprehensive treatment of the subject, up to 1975, see
the book by Aczél and Daróczy [3].

4More precise definitions are given in Section 0.7.
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meaning in the context of topos theory, developed by Artin, Grothendieck, Verdier
and their collaborators [4, 5] as a tool for algebraic geometry.5

The α-entropy satisfies a deformed chain rule,

Sα[(X,Y)](P) � Sα[X](X∗P) +
∑

x∈EX

(X∗P(x))αSα[Y](Y∗P |X�x). (0.11)

As an extension of Baudot and Bennequin’s results, we prove that Sα[·] is the only
family of measurable real-valued functions that satisfy these deformed functional
equations for generic pairs of random variables and probabilities, up to a multiplica-
tive constantK (Proposition 3.13). This is in turn connected toDaroczy’s fundamental
equation (0.8) cf. Chapter 5.

If the random variables X, Y represent the possibles states of two systems (e.g.
physical systems or random sources of messages) that are supposed to be indepen-
dent in the usual probabilistic sense, P(x , y) � X∗P(x)Y∗P(y), then

S1[(X,Y)](P) � S1[X](X∗P) + S1[Y](Y∗P). (0.12)

This property of Shannon entropy is called additivity. Under the same assumptions,
Tsallis entropy is nonadditive;6 when K � 1,

Sα[(X,Y)](P) � Sα[X](X∗P) + Sα[Y](Y∗P) − (α − 1)Sα[X](X∗P)Sα[Y](Y∗P). (0.13)

As we already said, this property is problematic from the point of view of heuristic
justifications for information functions, that assume as “intuitive” that the amount
of information given by two independent events should be computed as the sum of
the amounts of information given by each one separately.

0.3 Entropy in combinatorics
Before introducing the cohomological formalism, it is important to provide evidence
of the mathematical and practical relevance of these generalized entropies. As Kol-
mogorov and Shannon said, entropy is justified mainly by the its implications and
its relation to certain limiting theorems.

One of the most fundamental results in this direction relates Shannon entropy S1
to the growth of multinomial coefficients. More precisely: given a probability law
(p1 , ..., ps),7

lim
n

1
n

ln
(

n
p1n , ..., ps n

)
� −

s∑
i�1

pi ln pi �: S1(p1 , ..., ps). (0.14)

5Cathelineau [16] was the first to find a cohomological interpretation for the fundamental equation
(0.8): an analogue of it is involved in the computation of the homologyof SL2 over a field of characteristic
zero, with coefficients in the adjoint action; however, this result was not explicitly connected to Shannon
entropy or information theory. The first published work in this direction is a note by Kontsevich
(reproduced as an appendix in [27]), that introduces Hp(x) �

∑p−1
k�1

xk

k as “a residue modulo p” of
entropy, being the only continuous map f : Z/pZ→ Z/pZ that verifies f (x) � f (1− x) and an equation
equivalent to (0.8). He proves that a related function defines a cohomology class in H2(F, F), for
F � R or Z/pZ. Several works connected to motives or polylogarithms have emphasized the role of the
fundamental equation, for instance [12, 17, 27, 28].

6Originally, this was called nonextensivity, which explains the name ‘nonextensive statistical me-
chanics’.

7The reader can either assume that each pi is rational and the limit is taken over the n that verify
pi n ∈ Z, or that the multinomial coefficients are defined for complex arguments using the Γ-function.
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This is a first indication of the relevance of entropy in communication theory: it
approximates the counting of words of length n, made of s different symbols, each
appearing with probability pi . In statistical mechanics, it counts the number of
”configurations” of n particles, when s energy levels are available and pi is the
proportion of particles with energy Ei , for i ∈ {1, ..., s}.

The multinomial coefficients have an interesting q-analog. Given an indetermi-
nate q, define the q-integers {[n]q}n∈N by [n]q :� (qn − 1)/(q − 1) and the q-factorials
by [n]q! :� [n]q[n − 1]q · · · [1]q . The q-multinomial coefficients are[

n
k1 , ..., ks

]
q

:�
[n]q!

[k1]q! · · · [ks]q!
, (0.15)

where k1 , ..., ks , n ∈ N satisfy
∑s

i�1 ki � n. When q is a prime power, the coefficients
in (0.15) counts the number of flags of vector spaces V1 ⊂ V2 ⊂ ... ⊂ Vn � Fn

q such
that dim Vi �

∑i
j�1 k j (here Fq denotes the finite field of order q); we refer to the

sequence (k1 , ..., ks) as the type of the flag. In particular, the q-binomial coefficient[n
k

]
q :�

[ n
k ,n−k

]
q
counts vector subspaces of dimension k in Fn

q .
In Section 6.2 we study in detail the asymptotic behavior of the q-multinomial

coefficients. In particular, we obtain the following limit.

Proposition 0.2. Given a probability law (p1 , ..., ps),

lim
n

2
n2 logq

[
n

p1n , ..., ps n

]
q
� 1 −

s∑
i�1

p2
i �: S2(p1 , ..., ps). (0.16)

The function S2 is Tsallis 2-entropy, also known as quadratic entropy.

There is a connection between these combinatorial results and the algebraic char-
acterizations of entropy. To see this, remark first that the multinomial coefficients
satisfy some multiplicative identities, that can be interpreted as a recursive enumer-
ation. For instance, (

n
k1 , k2 , k3

)
�

(
n

k1 + k2

) (
k1 + k2

k1

)
(0.17)

means that the number ofwords of length n composed of three different symbols, say
{a1 , a2 , a3}, and such that ai appears ki times equals the number of words of length n
composed of two different symbols, say {a12 , a3}, such that a12 appears k1 + k2 times
multiplied by the number of ways of replacing the symbols a12 with k1 symbols a1 and
k2 symbols a2 (which reduces to count certain sub-words of length k1 + k2). In the
same spirit, if P � (p0 , p1), Q � (q0 , q1) are two probability laws on {0, 1}, then(

n
p0q0n , p0q1n , p1q0n , p1q1n

)
�

(
n

p0n

) (
p0n

p0q0n

) (
p1n

p1q0n

)
. (0.18)

Applying 1
n ln(−) to both sides and taking the limit n → ∞, we recover the additive

relation (0.12):

S1(p0q0 , p0q1 , p1q0 , p1q1) � S1(p0 , p1) + S1(q0 , q1). (0.19)
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Equation (0.18) remains valid for the q-multinomial coefficients, but in this case one
should apply limn

2
n2 logq(−) to both sides to obtain

2
n2 logq

[
n

p0q0n , p0q1n , p1q0n , p1q1n

]
q
�

2
n2 logq

[
n

p0n

]
q

+ p2
0

2
(p0n)2 logq

[
p0n

p0q0n

]
q
+ p2

1
2

(p1n)2 logq

[
p1n

p1q0n

]
q
, (0.20)

which in the limit gives

S2(p0q0 , p0q1 , p1q0 , p1q1) � S2(p0 , p1) + p2
0S2(q0 , q1) + (1 − p0)2S2(q0 , q1)

� S2(p0 , p1) + S2(q0 , q1) − S2(p0 , p1)S2(q0 , q1). (0.21)

Thus, asymptotically, the number of flags V00 ⊂ V01 ⊂ V10 ⊂ V11 � Fn
q of type

(p0q0n , p0q1n , p1q0n , p1q1n) can be computed in terms of the number of flags W0 ⊂
W1 � Fn

q of type (p0n , p1n) and those flags W′0 ⊂ W′1 � Fm
q of type (q0m , q1m)—where

m can take the values p0n or p1n—through this nonadditive formula. This example
is discussed in Chapter 6, followed by combinatorial justification of a maximum
2-entropy principle.

More generally, for any sequence D � {Di}i≥1 such that D1 � 1, define [n]D! as
DnDn−1 · · ·D1 and the corresponding Fontené-Ward multinomial coefficients by{

n
k1 , ..., ks

}
D

:�
[n]D!

[k1]D! · · · [ks]D!
. (0.22)

In Section 4.5, we prove that, for every α > 0, there is a generalized multinomial
coefficient asymptotically related to the corresponding α-entropy.

Proposition 0.3. If Dn � qnβ−1−1, for any q > 0, then{
n

p1n , ..., ps n

}
D
� exp

{
nβ

ln q
β

Sβ(p1 , ..., ps) + o(nβ)
}
. (0.23)

The Fontené-Wardmultinomial coefficients clearly satisfy the samemultiplicative
relations as the usual multinomial coefficients, so their logarithms (properly normal-
ized) are connected in the limit n → ∞ to the deformed chain rule (0.11), as we
already showed for the particular cases Dn � n (linked to α � 1, Shannon entropy)
and Dn �

qn−1
q−1 (linked to α � 2, quadratic entropy). Even more, these generalized

coefficients are also the solution of certain functional equations, that corresponds to
a cocycle condition in a combinatorial version of information cohomology.

Our motivation to study the q-multinomial coefficients was to understand better
the generalized information functions of degree α. Tsallis used them as the founda-
tion of nonextensive statistical mechanics, a generalization of Boltzmann-Gibbs sta-
tistical mechanics that was expected to describe well some systems with long-range
correlations. It is not completely clear which kind of systems follow these “gen-
eralized statistics”.8 There is extensive empirical evidence about the pertinence of

8Tsallis says: “...the entropy to be used for thermostatistical purposes would be not universal but
would depend on the system or, more precisely, on the nonadditive universality class to which the
system belongs” [88, p. xii].
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the predictions made by nonextensive statistical mechanics [88]. However, very few
papers address the microscopical foundations of the theory (for instance, [37,44,73]).
The considerations above prove that S2 can be understood as counting microstates
given by flags, still following Boltzmann intuitions [79]. We are not aware of any
physical situation where flags are a natural representation for the microstates. How-
ever, we were able to come up with a version of information theory where messages
correspond to vector spaces (flags of length 2) and to extend Shannon’s asymptotic
insights to this setting. This makes plausible an eventual application of these results
in statistical mechanics.9

0.4 A q-deformation of Shannon’s theory
We explain here how the combinatorial ideas introduced in the previous section,
combined with a new probabilistic construction, can be used to build a generaliza-
tion of Shannon’s theory where messages are vector spaces. Formula (0.16) already
suggests that the quadratic entropy plays an essential role in it. Most results sum-
marized here and in the following section were published as [92].

The asymptotic expansion of the multinomial coefficients (0.14) is of great im-
portance in Shannon’s theory. Consider a random source that emits at time n ∈ N
a symbol Zn in SZ � {z1 , ..., zs}, each Zn being an independent realization of a SZ-
valued random variable Z with law P. Amessage (at time n) corresponds to a random
sequence (Z1 , ..., Zn) taking values in Sn

Z with law P⊗n(z1 , ..., zn) :� P(z1) · · · P(zn).
The type of a sequence z ∈ Sn

Z is the probability distribution on SZ given by the
relative frequency of appearance of each symbol in it; for example, when SZ � {0, 1},
the type of a sequence with k ones is (1 − k

n )δ0 +
k
n δ1. By the law of large numbers,

a “typical sequence” is expected to have type P, and therefore its probability P⊗n(z)
is approximately

∏
z∈SZ P(z)nP(z) � exp{−nS1[Z](P)}. The cardinality of the set of

sequences of type P is
( n
P(z1)n ,...,P(zs )n

)
≈ exp{nS1[Z](P)}. This implies, according to

Shannon, that “it is possible for most purposes to treat the long sequences as though
there were just 2Hn of them, each with a probability 2−Hn" [78, p. 397]. This result
is known nowadays as the asymptotic equipartition property (AEP), and can be stated
more precisely as follows:

Theorem 0.4 (AEP, [20, Th. 3.1.2]). Given ε > 0 and δ > 0, it is possible to find n0 ∈ N
and sets {An}n≥n0 , An ⊂ Sn

Z, such that, for every n ≥ n0,
1. P⊗(Ac

n) < ε, and
2. for every z ∈ An , ���� 1

n
ln(P⊗n(z)) − S1[Z](P)

���� < δ. (0.24)

The size of An is optimal: if s(n , ε) denotes the minimal cardinality of a set Bn ⊂ Sn
Z that

accumulates probability 1 − ε,

s(n , ε) � min{ |Bn | | Bn ⊂ Sn
Z and P ((Z1 , ..., Zn) ∈ Bn) ≥ 1 − ε },

then
lim

n

1
n

ln |An | � lim
n

1
n

ln s(n , ε) � S1[Z](P). (0.25)

9Cf. Jaynes’ emblematic article on the connection between information theory and statistical me-
chanics [42].
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The set An can be defined to contain all the sequences whose type Q is close to
P, in the sense that

∑
z∈SZ |Q(z) − P(z)| is upper-bounded by a small quantity; this is

known as strong typicality (see [23, Def. 2.8]).
Similar conclusions canbedrawn for a systemof n independent physical particles,

the state of each one being represented by a randomvariableZi ; in this case, the vector
(Z1 , ..., Zn) is called a configuration. The set An can be thought as an approximation to
the effective phase space (“reasonable probable” configurations) and the entropy as
a measure of its size, see [43, Sec. V]. In both cases—messages and configurations—
the underlying probabilistic model is a process (Z1 , ..., Zn) linked to the multinomial
distribution, and the AEP is a result on measure concentration around the expected
type.

We propose a new type of statistical model, such that a message at time n (or a
configuration of n particles) is represented by a flag of vector spaces V1 ⊂ V2 ⊂ ... ⊂
Vs � Fn

q . In the simplest case (s � 2) a message is just a vector space V in Fn
q . While

the type of a sequence is determined by the number of appearances of each symbol,
the type of a flag is determined by its dimensions or equivalently by the numbers
(k1 , ..., ks) associated to it; by abuse of language, we refer to (k1 , ..., ks) as the type.
The cardinality of the set of flags V1 ⊂ ... ⊂ Vs ⊂ Fn

q that have type (k1 , ..., ks) is[ n
k1 ,...,ks

]
q
∼ C(q)qn2S2(k1/n ,...,ks/n)/2, where C(q) is an appropriate constant.

To build a correlative of Shannon’s theory of communication, it is fundamental
to have a probabilistic model for the source. In our case, this means a random process
{Fi}i∈N that produces at time n a flag Fn that would correspond to a generalized
message. We can define such process if we restrict our attention to the binomial case
(s � 2). This is the content of Chapter 7, summarized in the next paragraph.

Let θ be a positive real number, and let {Xi}i≥1 be a collection of independent
randomvariables that satisfyXi ∼ Ber(θq i−1/(1+θq i−1)), for each i. Wefix a sequence
of linear embeddings F1

q ↪→ F2
q ↪→ ..., and identify Fn−1

q with its image in Fn
q . The

n-dilations of a subspace w of Fn−1
q are defined as

Diln(w) :� { v ⊂ Fn
q | dim v − dim w � 1,w ⊂ v and v 1 Fn−1

q }. (0.26)

We then define a stochastic process {Vi}i≥0 such that each Vi is a vector subspace of
Fi

q , as follows: V0 � 0 and, at step n, the dimension of Vn−1 increases by 1 if and only
if Xn � 1; in this case, Vn is picked at random (uniformly) between all the n-dilations
of Vn−1. When Xn � 0, one sets Vn � Vn−1. We prove that, for any subspace v ⊂ Fn

q
of dimension k,10

P (Vn � v) �
θk qk(k−1)/2

(−θ; q)n
. (0.27)

This implies that

P (dim Vn � k) �
[
n
k

]
q

θk qk(k−1)/2

(−θ; q)n
, (0.28)

which appears in the literature as q-binomial distribution [48].
For the multinomial process, the probability P⊗n concentrates on types close to

P i.e. appearances close to the expected value nP(z), for each z ∈ SZ. In the case of
Vn , the probability also concentrates on a restricted number of dimensions (types).

10We use the q-Pochhammer symbols (a; q)n :�
∏n−1

i�0 (1 − aq i), with (a; q)0 � 1.
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Table 1: Correspondence between Shannon’s information theory in the case of memoryless
Bernoulli sources and our q-deformed version for vector spaces. The number q is supposed

to be a primer power; ξ ∈ [0, 1] and θ > 0 are parameters.

Concept Shannon case q-case

Message at time n
(n-message) Word w ∈ {0, 1}n Vector subspace

v ⊂ Fn
q

Type Number of ones Dimension

Number of
n-messages of type

k

(
n
k

) [
n
k

]
q

Probability of an
n-message of type

k
ξk(1 − ξ)n−k θk qk(k−1)/2

(−θ; q)n

In fact, it is possible to prove an analog of the asymptotic equipartition partition
property in this setting. Its statement requires the introduction of a left-continuous
function∆ : [0, 1) → N that depends on the asymptotic behavior of theGrassmannian
process (see Section 7.4), whose discontinuity points have Lebesgue measure zero.

Theorem 0.5 (Generalized AEP). Let {Vn}n∈N be a Grassmannian process, δ ∈ (0, 1) an
arbitrary number, and ε > 0 such that pε :� 1 − ε is a continuity point of ∆. Define An �⋃an

k�0 Gr(n−k , n) as the smallest set of the form
⋃m

k�0 Gr(n−k , n) such thatP (Vn ∈ Ac
n) ≤ ε.

Then, there exists n0 ∈ N such that, for every n ≥ n0,
1. An �

⋃∆(pε)
k�0 Gr(n − k , n);

2. for any v ∈ An such that dim v � k,����� logq(P (Vn � v)−1)
n

− n
2

S2(k/n)
����� ≤ δ. (0.29)

The size of An is optimal, up to the first order in the exponential: let s(n , ε) denote
min{ |Bn | | Bn ⊂ Gr(n) and P (Vn ∈ Bn) ≥ 1 − ε }; then

lim
n

1
n

logq |An | � lim
n

1
n

logq s(n , ε) � lim
n

n
2

S2(∆(pε)/n) � ∆(pε). (0.30)

The set An correspond to the “typical subspaces”, in analogy with the typical
sequences introduced above. We then deduce an optimal compression rate for Grass-
mannian sources (Section 8.3); the definition of an optimal coding scheme remains
an open problem, whose solution is probably connected to Schubert calculus.11

The arguments used in this section can be taken as a reproducible scheme towards
the generalization of conventional (“additive”) information theory and statistical me-
chanics. They do not only require a combinatorial interpretation of a generalized

11Other interesting questions concern (1) the extension of the Grassmannian process in order to
generate flags of arbitrary length; (2) the possible relations between this q-deformation of Shannon
theory and subspace codes, where messages are coded as vector spaces, and (3) the transmission of
subspaces over noisy channels.
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multinomial coefficient, but also the introduction of a stochastic process that gener-
ates the objects that are counted by them. For the moment we do not know how to
define a process that generates arbitrary flags, nor are aware of other combinatorial
interpretations apart of those already mentioned.

0.5 Information structures

We turn now to the promised categorical formalization leading to information co-
homology. The departing point is the introduction of information structures, which
encode the relations between different random variables and their possible results.
The content of Part I, summarized here and in the following section, can be found
in [91].

Traditionally, randomvariables are defined asmeasurable functions X : (Ω,F) →
(Rn ,B(R)), where (Ω,F) corresponds to certain sample space. This space has some
technical importance, but its arbitrary nature must not be forgotten. For example,
suppose that wewant to study the tossing of a die. As we know in advance that there
are six possible outcomes, we could chooseΩ � {1, 2, 3, 4, 5, 6}, but we could equally
well define Ω � [1, 7) with the algebra of sets generated by {[ j, j + 1) : j � 1, ..., 6}
and associate each interval [ j, j + 1)with the result “observe j dots”. This example is
discussed by Doob [26], who adds

[The natural objection that the model is] needlessly complicated, is easily
refuted. In fact, ’needlessly complicated’models cannot be excluded, even
in practical studies. How a model is setup depends on what parameters
are taken as basic. [...] If, however, the die is thought as a cube to be tossed
into the air and let fall, the position of the cube in the space is determined
by six parameters, and the most naturalΩmight well be considered to be
the twelve dimensional space of initial positions and velocities.

Random variables, also called “observables”, are introduced to model measure-
ments subject to unavoidable variability. In general, we know the possible outcomes
of our experiments, already constrained by the limitations of our measuring devices
(including our own perceptors). Like Gromov in [34], we want to approach mea-
surements from a categorical point of view, describing directly the relations between
them.12 Asample space (Ω,F) just serves as amodel that allowus to treat observables
as concretemeasurable functions.13 To suppose that such space exists reflects in fact a

12Apart from the articles by Baudot and Bennequin [10], and Gromov [34], we have been at least
indirectly influenced by other works that apply categorical ideas to probability, statistics or information
theory. One of the most important is Čensov’s book [90], that introduces the categorical language
to study the equivariance of optimal statistical decision rules (for inference) from a geometrical point
of view; he calls this “geometrical statistics”. An extension of these results is the subject of a recent
monograph by Ay et al. [7]. Categories also play an important role in Holevo’s book on probabilistic
and statistical aspects of quantum theory [40], where they are used to formalize the notion of “measure-
ment.” Baez and Fritz derived in [8] a new characterization of relative entropy studying an appropriate
category of finite probability spaces. See also their relatedworkwith Leinster [58]. With respect to those
works, the main novelty of this thesis resides in its topos-geometric approach and the computation of
cohomological invariants related to information theory. A related cohomology theory was introduced
by Abramsky and his collaborators [1] in order to detect contextuality and paradoxes; this problem is
detailed below.

13Such classical model does not always exists. For example, when observables do not commute,
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belief in reality, a unified underlying structure that accounts for all our observations.14
The probabilistic properties of the observables should not depend on the particular
model that has been chosen. As Terence Tao [84] says, “sample [probability] spaces
(and their attendant structures) will be used to model probabilistic concepts, rather
than to actually be the concepts themselves.”

In Doob’s example, there is a variable X taking six possible values

EX :� { , , , , , },

and this variable can be implemented as a category of partitions for multiple setsΩ.
We can represent the situation by a diagram

EX → {∗}. (0.31)

The set {∗} represents the output of constant random variable, corresponding to “cer-
tainty.” Given two variables X and Y, a measurable map πYX : (EX ,EX) → (EY ,EY)
between their possible outcomes says that the event of observing Y in specified mea-
surable set BY is compatible only with the event {X ∈ π−1(BY)}. As a consequence,
the determination of X � x implies that Y � πYX(y); more generally, any probability
on (EX ,BX) induces a unique probability on (EY ,BY).15 For example, we could add
a phase space (S,S) of initial positions and velocities, and relate through amap π ev-
ery output of the die with the initial conditions leading to it according to Newtonian
mechanics, which gives the diagram

(S,S) (EX , 2EX ) {∗}←→π ←→ (0.32)

where 2EX denotes the atomic σ-algebra. Normally, such map π is surjective, but the
system could be constrained in such a way that some outputs are not attainable from
any feasible initial conditions.

In practice, the position P and the velocity V are measured by different devices,
valued in certain sets (EP ,P) and (EV ,V), and the phase space (S,S) corresponds
to certain subset of the product (EP × EV ,P ⊗ V) given by the possible values of
the joint measurement, denoted here P ∧ V . We should also take into account the
joint measurement of X and P, denoted X ∧ V , as well as X ∧ V ; the measurement
X∧P∧V is equivalent to P∧V under the hypothesis that initial conditions determine

the underlying space E is defined as a Hilbert space and observable values appear as the spectrum of
hermitian operators on E.

14This is not an exaggeration: we shall see that some information structures arenoncontextual (Section
1.4) and therefore violate generalized Bell inequalities [2, Prop. III.1] (our noncontextual structures are
the possibilistically noncontextual structures there). In this sense, some information structures are
incompatible with hidden-variable models.

15Mathematically, we study probabilities according to Kolmogorov’s axiomatization [53]. Epistemo-
logically, we regard them as a quantification of uncertain knowledge adapted to the rules of plausible
reasoning, a viewpoint elaboratedby Jaynes in [41]; hisAppendixAdiscusses the compatibility between
these two perspectives. By no means we limit ourselves to frequentist scenarios.
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the output of X. At the level of variables, we have the dependencies

X ∧ P P

P ∧ V X 1

X ∧ V V

←→←

→

←

→← →

←

→

← → ←→

← →

←→

← →
(0.33)

where 1 is again certainty, and an arrow A→ B means that the value taken by B can
be deduced from the value taken by A; in this sense, A is more refined. We have
analogous relations at the level of values,

(EX × EP , 2EX ⊗ P) (EP ,P)

(S,S) (EX , 2EX ) {∗}

(EX × EV , 2EX ⊗V) (EV ,V)

←→←

→

←

→← →

←

→

← → ←→

← →

←→

← →
(0.34)

where ⊗ is the product of σ-algebras, and the arrows represent measurable maps.
Let S be the free category generated by the diagram (0.33); the diagram (0.34) can be
seen as the image of S under an appropriate functor E .

We introduce now a general definition in this sense.

Definition 0.6. An information structure is a pair (S, E ), where S (‘the variables’) is a
small category such that

1. S has a terminal object, denoted 1;
2. S is a skeletal partially ordered set (poset).16
3. for objects X,Y, Z ∈ Ob S, if Z → X and Z → Y, then the categorical product

X ∧ Y exists;17
and E is a conservative18, 19 covariant functor (‘the values’) from S into the category
Meas of measurable spaces, X 7→ E (X) � (E(X),B(X)), that satisfies

4. E(1) � {∗}, with the trivial σ-algebra B(1) � {∅, E(1)};
5. for every X ∈ Ob S and any x ∈ E(X), the σ-algebraB(X) contains the singleton
{x};

6. for every diagram X X ∧ Y Y←→π ←→σ the measurable map E(X∧Y) ↪→
E(X) × E(Y), z 7→ (x(z), y(z)) :� (π∗(z), σ∗(z)) is an injection.

These information structures generalize those introduced by Baudot and Ben-
nequin in [10]: the objects of the latter were partitions of some set Ω. The new

16Being a poset means that, for any objects A and B, Hom(A, B) has at most one element. The poset
is skeletal if it has no isomorphisms different from the identities: if A , B and A→ B, then B 6→ A.

17This could be called “conditional meet semi-lattice”.
18Given a functor F : S→ Sets, we denote its value at X ∈ Ob S by F (X) or FX .
19Conservative means that, if E ( f ) is an isomorphism, then f is an isomorphism. Since S is skeletal,

this condition implies that, for every arrow π : X → Y such that X , Y, the measurable map
π∗ :� E (π) : E(X) → E(Y) is not a bĳection.
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ones are sufficiently general to provide a common ground for classical and quantum
information; the general algebraic constructions of Chapter 2 are valid for all the
known versions of information cohomology. Besides, the morphisms between them
are defined more naturally.

Definition 0.7. Given two structures (S, E ), (S′, E ′), a morphism φ � (φ0 , φ#) :
(S, E ) → (S′, E ′) between them is a functor φ0 : S → S′ and a natural transfor-
mation φ# : E ⇒ E ′ ◦ φ0, such that

1. φ0(1) � 1;
2. if X ∧ Y exists, then φ0(X ∧ Y) � φ0(X) ∧ φ0(Y);
3. for each X ∈ Ob S, the component φ#

X : E (X) → E ′(φ0(X)) is measurable.
Given φ : (S, E ) → (S′, E ′) and ψ : (S′, E ′) → (S′′, E ′′), their composition ψ ◦ φ is
defined as (ψ0 ◦ φ0 , ψ# ◦ φ# : E ⇒ E ′′ ◦ ψ0 ◦ φ0).

Proposition 1.8 establishes that this category has finite products and coproducts.
Given an information structure (S, E ), one can define a presheaf (contravariant

functor) of monoids that maps X ∈ Ob S to the the set SX :� { Y ∈ Ob S | X → Y }
equipped with the product (Y, Z) 7→ YZ :� Y ∧ Z, where ∧ denotes the meet
(categorical product) in S; an arrow X → Y is mapped to the inclusion SY ↪→ SX .
The associated presheaf of induced algebras is X 7→ AX :� R[SX]. Probabilities are
also a functorΠ : S→ Sets, that associates to each X ∈ Ob S the setΠ(X) ofmeasures
on E (X) such that

∫
EX

dρ � 1. Each arrow f : X → Y induces a measurable map
E ( f ) : E (X) → E (Y), and Π( f ) : Π(X) → Π(Y) is defined to be the push-forward of
measures: for every B ∈ BY ,

(Π( f )(ρ))(B) � ρ(E ( f )−1(B)). (0.35)

This operation is called marginalization. We write f∗ or Y∗ instead of Π( f ) (normally
the source of the arrow is clear from context); of course, this is compatible with the
notations of Section 0.2.

If I is any set, let ∆(I) be the category of its finite subsets, with arrows A → B
indicating that B ⊂ A. Fpr us, a simplicial subcomplex of ∆(I) is a full subcategory
K such that, for any given object of K (’a cell’), all its subsets are also objects of K
(’faces’). Associate to each vertex {i} ofK ameasurable set (Ei ,Bi), and to every other
A ∈ Ob K the measurable set E (A) :� (EA ,B(EA)), where EA �

∏
i∈A Ei and B(EA)

is the corresponding Borel σ-algebra, that is also the product σ-algebra
⊗

i∈ABi
(see Section 9.1). This defines a functor E if we associate to every arrow in K
the corresponding canonical projector. The pair (K, E ) is a simplicial information
structure.20

The simplicial structures are flexible enough to cover graphical models [67], [63,
Ch. 9]: the Ising model and its generalizations, Markov fields, Bayesian networks...
In these examples there is a set of random variables {Xi}i∈I and a distinguished
collection C of subsets that represent some sort of local interactions; we define K as
the smallest simplicial subcomplex of ∆(I) that contains C. The local information can
come as a subfunctorQ ofΠ that associates to each variable (Xi1 , ...,Xim ) represented
by {i1 , ..., im} ∈ Ob K a set of possible probability laws (joint distributions). In fact,
the functor E itself can be seen as a representation of admissible local configurations.

20It is worth noting that abelian (co)presheaves on simplicial structures are cellular (co)sheaves in the
sense of [24].



30 Topoi and cohomology

Remark that in the simplicial case E and Π can be extended easily to the whole
category ∆(I), that should be thought as a larger geometrical space that contains
K. The so-called marginal problem asks when a section s of Π on K, i.e. an element
s ∈ Γ(K,Π),21 can be extended to a section s̃ of Π on ∆(I) that coincides with s
over each A ∈ Ob K; this extension s̃ is meant to represent a joint state of all the
Xi compatible with the known local interactions. (This problem is analog to that of
extensions of holomorphic functions in complex analysis.) It is well known that such
extension does not always exist: this correspond to frustration in physics [62, 67], to
contextuality in quantum mechanics, and paradoxes in logic [1, 2, 30].

Section 1.4 studies the conditions under which the variables of an information
structure can be represented as measurable functions on a unique sample space
(Ω,F), supposing that the nerve of S has finite dimension and each space EX in the
image of E is finite; such representation is a classical model. A necessary condition is
the existence of a global section s(x) of E compatible with any given value x ∈ EX
assigned to any variable X. We determine in which case the collections of compatible
measurements, elements of limS E, constitute themselves a classical model.

0.6 Topoi and cohomology

Inmodern treatments of algebraic geometry, category theory and related subjects, the
appropriate notion of “space” is a topos. The initial motivation comes from topology:
from the categorySh(T) of sheaves on a topological spaceT, one can recover its lattice
of open sets, provided that each point is determined by its open neighborhoods [65,
Sec. I.2]. Sheaves are particular Sets-valued functors on the category of open sets
of T, such that a global section is uniquely determined by compatible local data
prescribed on any covering of T. Grothendieck and his collaborators realized that
this still makes sense if the category of open sets is replaced by any other category;
actually, he introduced a notion of topology (site) on an arbitrary category, which
is defined in terms of its arrows. The category of sheaves thus obtained is called a
(Grothendieck) topos. The motivation behind is captured in the following quotation
from the SGA 4 [4, IV 0.4], the book that introduced the theory:

So we can say that the notion of topos, a natural derivative of the sheafy
point of view in Topology, constitutes a substantial enlargement of the
notion of topological space, encompassing a large number of situations
that in thepastwerenot considered todependon the topological intuition.
The characteristic feature of such situations is that there is a notion of
“localization”, which is formalized precisely by the notion of site and,
in the final analysis, by that of topos (via the topos associated with the
site). As the term “topos” itself is meant to suggest, it seems reasonable
and legitimate to the authors of this Seminar to consider that the object
of Topology is the study of topos (and not only topological spaces).

Lawvere and his collaborators introduced a more general notion of topos: these are

21A section s ∈ Γ(K,Π) is an element of the set Hom[K,Sets](∗,Π), where [K, Sets] is the category of
Sets-valued functors on K and ∗ is the functor that associates to each X ∈ Ob K a singleton. Then s is a
collection of probabilities, that are mutually compatible under marginalizations. This also appears in
the literature as pseudo-marginals [94] and many other names.
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categories that behave like the category of sets with respect to certain operations;
they also formalize generalized logical theories. We refer the reader to [15,55,61,65].

The category of presheaves on a given category can be seen as a topos for the
trivial topology (topologie grossière). For us the main examples are the presheaf topoi
on S or Sop for a given information structure (S, E ); we shall see that in these topoi the
relevant notion of localization is always linked tomarginalizations (also called coarse-
graining in the physics literature). The advantage of the topological viewpoint for the
study of information structures is that new geometrical intuitions become available,
as well as very general algebro-geometrical tools. We did not explore the connections
to logic, but this undoubtedly constitutes a very interesting problem.

It should also be noted that in modern geometry spaces are studied though their
(co)homology, that to some extent encodes their “shape”. Bennequin and Baudot [10]
introduced a cohomological formalism connected to information functions, called
information cohomology. The definition utilizes the general algebraic machinery of
topos theory, as we now explain.

Recall from the previous section that to any structure (S, E ) we can associate a
presheaf of algebras A . An A -module is a functor F from Sop to the category of
abelian groups such that, for each X ∈ Ob S, the group F (X) has the structure of an
AX-module; the action by A is supposed to respect functoriality. These presheaves
and the natural transformations between them form an abelian category denoted
Mod(A ),22 which entails the possibility of defining cohomological functors. The
right derived functor of Hom(−,W ) (where W is a fixed sheaf of A -modules) is
Ext•(−,W ); it is a cohomological functor (exact δ-functor, see Section 2.1.3): for an
exact sequence 0→ V ′→ V → V ′′→ 0 of sheaves, it induces a long exact sequence

0→ Hom(V ′,W ) → Hom(V ,W ) →
Hom(V ′′,W ) → Ext1(V ′,W ) → Ext1(V ,W ) → ... (0.36)

as singular or cellular cohomology do in basic topology.
The information cohomology of S with coefficients in the A -module F is

H•(S,F ) :� Ext•(RS ,F ), (0.37)

where RS is the sheaf that associates to every X ∈ Ob S the set R with trivial AX
action (i.e. for all Y ∈ SX and all r ∈ R, Y.r � r).

Recurring to another algebraic construction, called the (relative) bar resolution
[60, Ch. IX], we can give a more computable description of this cohomology, that
serves as an alternative definition explicitly connected to information measures as
explained below.

The bar construction gives a sequence of projective A -modules

0 RS B0 B1 B2 ...←→ ←→ε ←→∂1 ←→∂2 ←→∂3 , (0.38)

that is a resolution, meaning that ker ε � im ∂1 and, for every n ≥ 1, ker ∂n � im ∂n+1.
Moreover, for each X ∈ Ob S, n ∈ N, the module Bn(X) is freely generated over AX

22In [35], Grothendieck defined abelian categories and derived functors as a general ground for
homological algebra. Essentially, an abelian category has an appropriate notion of kernel and cokernel,
and it allows the introduction of homological algebra mimicking the case of modules.
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by the symbols [X1 |...|Xn]; in the case of B0(X), simply by a symbol [ ]. Proposition
2.13 proves that, due to the conditional existence of products in the definition of S,
these {Bi}i are projective objects in the category Mod(A ).23

Given any A -module F , we obtain a sequence

0 HomA (RS ,F ) HomA (B0 ,F ) HomA (B1 ,F ) HomA (B2 ,F ) ...←→ ←→ ←→δ
0 ←→δ

1 ←→δ2 ,

(0.39)
that is no longer a resolution, but δ2 � 0 holds. Define Cn(F ) :� HomA (Bn ,F ); an
element φ ∈ Cn(F ) is uniquely determined by its image on the generators [X1 |...|Xn],
that we denote φ[X1 |...|Xn]. Themap δn : Cn(F ) → Cn+1(F ) is given by the formula

δnφ[X1 |...|Xn+1] � X1.φ[X2 |...|Xn+1] +
n∑

k�1

(−1)kφ[X1 |...|XkXk+1 |...|Xn]

+ (−1)n+1φ[X1 |...|Xn] (0.40)

The cohomology of the differential complex (Cn , δ) measures the difference be-
tween ker δn and im δn−1; it is defined as

H0(C•(F ), δ) :� ker δ0 and Hn(C•(F ), δ) :� ker δn/im δn−1 (0.41)

when n ≥ 1. It can be proved that there is a unique ∂-functorial identification of
H•(S,F ) with H•(C•(F ), δ) and in this sense both constructions are regarded as
equivalent, cf. Section 2.1.3.

The elements of ker δ0 are called 0-cocycles; they satisfy, for every X ∈ Ob S and
Y ∈ SX ,

0 � Y.φX[ ] − φX[ ]. (0.42)

The elements of im δ0 are 1-coboundaries and those of ker δ1 are 1-cocycles. The
latter are characterized by

0 � Y.φX[Z] − φX[YZ] + φX[Z], (0.43)

for any X ∈ Ob S andY, Z ∈ SX . The reader should compare these cocycle conditions
with the recurrence formulae in Section 0.2 and 0.3; this is clarified below.

0.7 Cohomology of discrete variables

This section summarizes the results in Part II of this thesis. It is supposed everywhere
that the nerve of S has finite dimension and that each set EX , for X ∈ Ob S, is
finite. We obtain cohomological results for two different modules of coefficients,
the first corresponding to probabilistic functionals and the second to combinatorial
ones. We determine completely H0 and H1. The computation of higher cohomology
groups remains an open problem because the functional equations involved are very
complicated.

The probabilistic case appeared initially in [91].

23The general construction only gives a sequence of relativelyprojective objects, as explained in Section
2.3.
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0.7.1 Probabilistic cohomology

Let Q denote any subfunctor of Π (the functor of probability measures) stable under
conditioning. We represent every probability law by its density P with respect to the
counting measure. Let F (X) be the additive abelian group of measurable24 real-
valued functions on Q(X) and, for any arrow π : X → Y, let F (π) : F (Y) → F (X)
be precomposition with marginalization: F (π)(φ) � φ ◦ π∗. We obtain in this way a
contravariant functor F on S.

For each Y ∈ SX , φ ∈ F (X) and P ∈ Q(X), define

(Y.φ)(P) �
∑
y∈EY

(Y∗P(y))αφ(PX |Y�y). (0.44)

By convention, a summand is simply 0 if Y∗P(y) � P(Y � y) � 0. This turns each
F (X) into an AX-module and this action is functorial, in such a way that F becomes
an A -module Fα (there is a family, one for each α > 0).

We call probabilistic the information cohomology with coefficients in some Fα.
Using the bar-resolution description introduced in the last section, we can determine
the following facts.

A 0-cochain is a collection
{
φX[]

}
X∈Ob S that is local: for any X, φX[](P) � φ1[](1),

so φX[] equals a constant K ∈ R. The boundary of φ is (δφ)[Y] � Y.φ[] − φ[] which
evaluated on a probability P ∈ Q(X) reads

(δφ)[Y](P) �
∑
y∈EY

(Y∗P(y))αK − K �

{
0 if α � 1
KSα[Y](Y∗P) otherwise

.

In other words: every cochain is a 0-cocycle if α � 1. There are no 0-cocycles if α , 1,
but Tsallis entropy appears as 1-coboundary, multiplied by a global constant K.

The1-cochains are characterizedby collectionsof functionals
{
φ[X] : Q(X) → R

}
X∈Ob S,

which takes into account joint locality: φY[X] � φX[X] �: φ[X]. The 1-cocycles ad-
ditionally satisfy

0 � X.φ[Y] − φ[XY] + φ[X] (0.45)

as functions on Q(XY), where marginalizations are implicit. As explained in Section
0.2, this equationand its analoguewithX andY permuted imply thatφ[·] � KXYSα[·],
for a constant KXY ∈ R. This holds as long as QXY contains enough probabilities;
a precise sufficient condition is stated in the definition of nondegeneracy for the
product of two variables (Definition 3.12).

The number of free constants is determined in Theorem 3.14, the main result of
Chapter 3. For a simplicial structure (K, E ), it says that

H1(S,F1(Π)) � Rβ0(K) and H1(S,Fα(Π)) � Rβ0(K)−1 when α , 1, (0.46)

where β0(K) is the number of connected components of (the geometric realization
of) K. On each component the entropy Sα appears as the unique generator of Z1. We
conjecture that higher cohomology groups are linked to the higher Betti numbers.

24In all the cases we consider, the measures have the structure of a topological space, that becomes a
measurable space with the corresponding Borel σ-algebra. For a discrete variable X,Π(X) � ∆|EX |−1 ⊂
R|EX | .
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0.7.2 Combinatorial cohomology

Let C : S → Sets be the functor that associates to each X ∈ Ob S the set C (X) of
counting functions: ν : EX → N such that ‖ν‖ :�

∑
x∈EX ν(x) > 0. Given π : X → Y,

the arrow π∗ :� C (π) : C (X) → C (Y) is given by the corresponding marginalization
π∗ν(y) �

∑
x∈π−1(y) ν(x).

Let G(X) be the multiplicative abelian group of measurable (0,∞)-valued func-
tions on C (X). Every arrow π : X → Y induces a map G(π) : G(Y) → G(X) given by
precomposition with marginalizations, G(π)(φ) � φ ◦ π∗.

For each Y ∈ SX , φ ∈ G(X) and ν ∈ C (X), define

(Y.φ)(PX) �
∏
y∈EY

ν(Y�y),0

φ(ν |Y�yi ). (0.47)

As in the probabilistic case, this turns G into an A -module. The computation of
H•(S,G) gives the following results. The 0-cochains correspond again to collections{
φX[]

}
X∈Ob S and locality implies that, for any X, φX[](ν) � φ1[](π1X∗ν) �: ϕ(‖ν‖).

The 0-cocycle condition is 1 � (δφ)[Y] � (Y.φ[])(φ[])−1; evaluated on a counting
function ν ∈ C (Y) it reads

ϕ(‖ν‖) � ϕ(ν1)ϕ(ν2) · · · ϕ(νs), (0.48)

and evidently the only solutions are ϕk(x) � exp(kx), for k ∈ R. The 1-cochains
are characterized by collections of functionals

{
φ[X] : C (X) → R

}
X∈Ob S, and they

define a 1-cocycle if, for every admissible product XY,

φ[XY] � (X.φ[Y])φ[X] (0.49)

as functions on C (XY), marginalizations being implicit. In virtue of Proposition 4.8,
the solutions to these equations are of the form

φ[Z](ν) � [‖ν‖]D!∏
z∈EZ [ν(z)]D!

(0.50)

where [0]D! � 1 and [n]D! � DnDn−1 · · ·D1D0, for any sequence {Di}i≥1 such that
D1 � 1. These are the Fontené-Ward multinomial coefficients introduced in Section
0.3. Remark that (0.49) serves as a general statement of the recursive formulae
satisfied by the multinomial coefficients and their generalizations; particular cases
are (0.17) and (0.18).

The asymptotic relation between the usual multinomials and S1, on the one hand,
and the q-multinomials and S2, on the other, become particular cases of a general
correspondence principle (Proposition 4.11).

Proposition 0.8. Let g be a combinatorial n-cocycle. Suppose that, for every X1 , ...,Xn ∈
Ob S such that Xi · · ·Xn ∈ Ob S, there exists a measurable function

f [X1 |...|Xn] : Π(X1 · · · ,Xn) → R

with the following property: for every sequence of counting functions {νn}n≥1 ⊂ CX1···Xn

such that
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1. ‖νn ‖ → ∞, and
2. for every z ∈ EX1···Xn , νn(z)/‖νn ‖ → p(z) as n →∞

the asymptotic formula

g[X1 |...|Xn](νn) � exp(‖νn ‖α f [X1 |...|Xn](p) + o(‖νn ‖α))

holds. Then f is a n-cocycle of type α, i.e. f ∈ Zn(S, Fα(Π)).

0.8 Differential entropy and relative entropy

According to Shannon [78], the analogue of (0.3) for Rn-valued random variables
with densities is

h[X](λn , f ) � −
∫
Rn

f (x) ln f (x)dx. (0.51)

where we have highlighted the dependence on a variable X, the Lebesgue measure
λn on EX � Rn , and the density f with respect to thismeasure. This function is called
differential entropy. Shannon points to some apparent differences with the discrete
case:

In the discrete case the entropy measures in an absolute way the random-
ness of the chance variable. In the continuous case the measurement is
relative to the coordinate system. If we change the coordinates the entropy
will in general change [...] the new entropy is the old entropy less the
expected logarithm of the Jacobian. In the continuous case the entropy
can be considered ameasure of randomness relative to an assumed standard,
namely the coordinate system chosen with each small volume element
dx1 · · · dxn given equal weight. [...]

The entropy of a continuous distribution can be negative. The scale of
measurements sets an arbitrary zero corresponding to a uniform distri-
bution over a unit volume. A distribution which is more confined than
this has less entropy and will be negative.

Kolmogorov [52, p. 16] even says that “It is well known that [the differential entropy]
does not have a straightforward meaningful interpretation and is even noninvariant
with respect to transformations of coordinates in the space x1 , .., xn ,” but in fact
such meaningful interpretation exists and its related to asymptotic concentration of
measure.

We prove in Chapter 12 the following version of the Asymptotic Equipartition
Property. We do not claim originality here (it is proved as [20, Thm. 8.2.2]). Let
(EX ,B, µ) be a σ-finite measure space and {Xi}i∈N a collection of iid (EX ,B)-valued
random variables, each following a law ρ with density f :� dρ/dλ with respect to
µ. The (relative) entropy is defined by25

Sµ(ρ) :� Eρ
(
− ln

dρ
dµ

)
� −

∫
supp µ

f (x) ln f (x)dµ(x). (0.52)

25This generalizes the entropy already treated in an article by Csiszár [21], that discusses its approx-
imation by means of discretizations of the variable X.
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Theorem 0.9 (Asymptotic Equipartition Property). Suppose that Sµ(ρ) is finite. For
every δ > 0 and n ∈ N, set

A(n)δ :�
{
(x1 , ..., xn) ∈ En

X

�� | − 1
n

log fX1 ,...,Xn (X1 , ...,Xn) − Sµ(ρ)| ≤ δ
}
. (0.53)

Then,
1. for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

P
(
A(n)δ

)
> 1 − ε;

2. for every n ∈ N,
µ⊗n(A(n)δ ) ≤ exp{n(Sµ(ρ) + δ)};

3. for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

µ⊗n(A(n)δ ) ≥ (1 − ε) exp{n(Sµ(ρ) − δ)}.

When EX is a countable set (possibly infinite), and µ the counting measure, a
probability law ρ on EX is always absolutely continuous with respect to µ, and
its density is a function p : EX → [0, 1] such that

∑
x∈EX p(x) � 1, that is usually

taken as the definition of a probability law in the discrete case.26 Then Sµ(ρ) is the
familiar expression −∑

x∈EX p(x) log p(x) and the previous theorem corresponds to
Proposition 0.4. Note that it is also possible to consider any multiple of the counting
measure, ν � αµ, for α > 0. In this case, the probability density dρ/dν sums α−1

and Sν(ρ) � Sµ(ρ) + ln(α). Hence, the “absolute character” of the discrete entropy is
illusory, it also depends on the reference measure.

If EX � Rn , µ is some Lebesgue measure, and ρ a probability law such that
ρ � µ, then the derivative dρ/dµ ∈ L1(Rn) corresponds to the elementary notion
of density, and the quantity Sµ(ρ) is the differential entropy introduced by Shannon.
As Shannon already explained, a coordinate transformation changes the reference
measure. The expected value of the Jacobian gives the necessary factor to correct the
volume estimates. For example, if T is an invertible linear transformation,

µ⊗n(TA(n)δ ) ≈ exp(nSµ(ρ))(det T)n ≈ (det T)nµ⊗n(A(n)δ ). (0.54)

For any EX , if µ is a probability law, the expression Sµ(ρ) equals −DKL(ρ | |µ),
where DKL is the Kullback-Leibler divergence.

In the same vein, Section 12.2 explains how the divergence of entropy to−∞when
ρ approaches a singular measure is necessary for the consistence of this theorem.

0.9 Cohomology of continuous variables

Let (K, E ) be a simplicial information structure as defined in Section 0.5; each set
S ∈ Ob K can be viewed as a random variable XS. Suppose moreover that each space
(Ei ,Bi) is second-countable, in such a way that each B(EA) equals

⊗
i∈ABi , and

the choice of a σ-finite reference measure µi for each {i} ∈ Ob K induces a product

26Also because p(x) � ρ({x}), which does not make sense in the continuous case.
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measure µA �
⊗

i∈A µi on (EA ,B(EA)) for any other A ∈ Ob K. This example is
general enough to cover the discrete systems already treated (when each Ei is a finite
set and µi is the counting measure), and also new examples: Euclidean spaces with
their Lebesgue measure, and more generally products of locally compact Hausdorff
topological groups endowed with a Haar measure.

We consider measures ρ ∈ Π(S) that are absolutely continuous with respect to
the corresponding µS, with density fρ. This gives the well known formulae for
marginalizations under πT,S : ES → ET by partial integration of the densities,

fρ 7→ fπT,Sρ �

∫
ES\T

fS(xT , xS\T)dµS\T(xS\T).

However, conditioning introduces several complications, since ρ |XT�t is a law on ES
supported on the hyperplane {XT � t}:

ρ |XT�t �
fρ∫

ES\T
fρ(x , t)dµS\T(x)

µS′\T ⊗ δT�t , (0.55)

This forces the consideration of a larger class of measures closed under conditioning,
which requires a careful study of disintegration carried out in Section 9.2.

We introduce a functor Q that associates to each S ∈ Ob K the set of probability
measures absolutely continuous with respect to a given reference measure,

Q(S) � { (µ, ρ)) | ρ ∈ Π(S), µ � µS′ ⊗ δS′′�a for some
S′, S′′disjoint such that S � S′ ∪ S′′, and ρ � µ }, (0.56)

and then sets F+(S) of measurable nonnegative functions ϕ : Q(S) → R. For every
T ∈ SS and ϕ ∈ F+(S), set

(T.ϕ)(µS′ ⊗ δS′′�s′′ , ρ) :�
∫

ET

ϕ(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ , ρt)dT∗ρ(t), (0.57)

where ρt is the conditional measure, supported on {T � t}; it has a density with
respect to the reference measure µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′.

This equationdefines an action of the correspondingmonoidSX on the setF+(S).
To treat signed functions, additional conditions must be imposed to guarantee the
convergence of the integral. For instance, this can be accomplished restricting Q(S)
to gaussian laws QGauss(S) and using the preferred basis of each ES to parametrize
these probabilities by their mean and variance (m ,Σ). Define FGauss(S) as the ad-
ditive abelian group of measurable functions ϕ : QGauss(S) → R that grow at most
polynomially in the variable m; this implies that the integral in (0.57) converges and
determines a functorial action of SS and AS on FGauss(S).

In Chapter 10 we compute the information cohomology of these simplicial struc-
tures, restricting to modules F (S) under the action (0.57), for instance FGauss(S).
We can prove in general that 0-cochains must be constants and they all satisfy the
0-cocycle equation. We then find an alternative characterization of 1-cochains, as
collections Φ � {φS}S∈Ob K such that each φS is a real-valued function of the prob-
abilities ρ on ES absolutely continuos with respect to the measure µS, subject to a
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simplified 1-cocycle condition. The general properties of disintegrations imply that
φS(ρ) � Eρ

(
− ln dρ

dµS

)
defines a 1-cocycle.

The case FGauss(S) is explicit enough to characterize all the 1-cocycles. First we
determine the 1-cocyles that depend only on the variance Σ.

Proposition 0.10. Suppose that K is connected and all its vertices belongs to a 1-cell. A
collection of C2 functions27 Φ � {φS : PD(S) → R}S∈S defines a 1-cocycle if and only if
there exist real constants a and {ki}i∈I such that, for every S ∈ S,

φS(Σ) � a ln(|Σ|) +
∑
i∈S

ki . (0.58)

It is well known that the differential entropy of a gaussian law ρ on ES with mean
m and covariance Σ is

hS(ρ) � d
(

logb(2πe)
2

)
+

1
2

logb(|Σ|), (0.59)

which is a particular case of (0.58).
The characterization of general 1-cocycles is much more involved and requires

several results fromdistribution theory. Weprove that they also include themoments
and their generalizations. We say that ϕ(m , σ) is a generalized moment function (gmf)
associated to the family g � {gε : R → C}ε>0 of locally integrable functions if
gε(x) exp(−ax2) is integrable for every a > 0, and if

ϕ(m , σ) � 1√
2π(σ − ε)

∫
R

gε(x) exp
(
−(x − m)2

2(σ − ε)

)
dx (0.60)

whenever σ > ε. We write ϕ(g) to highlight the dependency on the family g. Usual
moments of a univariate normal of parameters (m , ε) are an example: gk ,ε(m) :�

Mk(m , ε) � 1√
2πε

∫
R

zk e−
1
2
(z−m)2

ε dz and ϕ(m , σ) :� gk(m , σ). Remark that M0 is a
constant.

Theorem 0.11 (Structure theorem of 1-cocycles, simplicial case). Suppose that every
0-cell of K belongs to a 1-cell. If φS is a 1-cocycle, then there exist generalized moment
functions {ϕ( f i)}i∈I , and a constant a ∈ R such that

φS(m ,Σ) �
∑
i∈S

φ(mi , σii | f i) + a ln(|Σ|), (0.61)

Hence we obtain an infinite number of 1-cocycles. This can be explained by
the very particular role played by the coordinate axes used to define the simplicial
information structure. Since this basis was introduced just for convenience, the result
motivates the introduction of more general examples of information structures that
we call grassmanian categories.

A Grassmannian information structure is defined by a poset S of subspaces of
a vector space E, ordered by inclusion, that is supposed to contain E and be closed

27The positive definite matrices PD(S) ⊂ M|S |(R) are supposed to have the standard differential
structure.
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under conditional intersection i.e. if V,W ∈ Ob S and there exists Z ∈ Ob S such
that Z ⊂ V and Z ⊂ W , then V ∩ W is also an object of S. We also introduce a
functor E : S → VectSpaces that associates to each vector subspace V the quotient
space EV :� E/V and to every arrow V → W (i.e. V ⊂ W) the canonical projection
πWV : EV → EW . The pair (S, E ) is an information structure (each vector space is
supposed to come with its Borel σ-algebra).

To every V ∈ Ob S we can associate the set SV :� {W ∈ Ob S |V →W }, that is a
monoid for the intersection (W,W′) 7→W ∩W′. As before, let AV denote its induced
real algebra; an arrow V → W gives an inclusion AW ↪→ AV i.e. a presheaf. The
pair (S,A ) is a ringed site.

We introduce a precosheaf that associates to every V ∈ Ob S the set MV of affine
subspaces of EV or more generally a subset NV ⊂ MV that represent supports of
probability laws; the corresponding morphisms N (πWV ) : NV → NW are induced
by projections. In view of conditioning, we suppose that N is closed under pro-
jections, and also that it contains the fibers of the projections and every nonempty
intersection of its elements. We also introduce a functor L that combines these sup-
ports with a possible choice of Lebesgue measure: LV contains pairs (A, λA) with
A ∈MV and λA Lebesgue measure on A; this has the structure of a principal bundle
for the group (R∗+ ,×), that acts on the measures by multiplication.

Section 11.2 studies the moments of Gaussian laws in a basis-free manner, which
differs from standard presentations. AGaussian law ρ is a probability law supported
on an affine space A(ρ), absolutely continuouswith respect to a Lebesguemeasure λ;
the densityG(ρ, λ) is such that−D2

X ln G(ρ, λ) is a nondegenerate symmetric positive
bilinear form B. The covariance Σ if defined to be the inverse of B; it is proved to be
independent of the choice of λ. The mean is defined as usual, M(ρ) � Eρ (X).

Additional choices are needed to introduce the trace and the determinant. A
choice of Lebesgue measure induces a determinant detλ. The trace requires an
isomorphism between the tangent space of A, denoted T(A), and its dual. This
implies that the moment of order two of a gaussian law on EV depends on the choice
of a metric on this space.

We introduce a sheaf F such that FV are the measurable functions on the proba-
bility lawsPV supported on some space ofNV , that growatmost polynomially in the
mean M(ρ). The action introduced in the simplicial case is generalized straightfor-
wardly to this setting. Proposition 11.24 establishes ρ 7→ dim A(ρ) defines a cocycle
for this module of coefficients; this is implied by the rank theorem.

For every V ∈ Ob S, the differential entropy SV is a function of a probability ρ and
a reference measure λ on its support given by the formula SV (ρ, λ) � −

∫
log dρ

dλ dρ.
It does not belong to FV , since it depends on the choice of reference measure λ: in
fact, S(ρ, Cλ) � S(ρ, λ)+log C. To formalize this variation in a functorialway, remark
that the choice of an euclidean metric on E induces identifications E/V � V⊥ and
inclusions of every affine subspace A ⊂ EV in E, hence a choice of Lebesgue measure
λQ(A) on every support that we call a metric trivialization of L . We introduce the
vector space X of functions of a probability ρ on EV and a metric trivialization λQ
of LV such that

∀ρ ∈PV , ∀Q ,Q′ euclidean metrics on E,
φ(ρ, λQ′) � φ(ρ, λQ) + ln D(T(A(ρ)); Q ,Q′), (0.62)
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where D is a “discriminant” function that satisfies

D(B; Q ,Q′)D(B; Q′,Q′′) � D(B; Q ,Q′′)

for any triple of metrics Q ,Q′,Q′′ and any vector space B ⊂ EV . For any ι : V → W
in S and φ ∈ XV , the equation (W.φ)(ρ, λQ) �

∫
A(ι∗ρ) φ(ρ |W�w , λQ)dι∗ρ(w) defines a

natural action of SV on XV .
The collection of function {SV }V∈Ob S determines a 1-cochain in information co-

homology with coefficients in X , that in fact is a 1-cocycle because it obeys the
continuous version of the chain rule. In sufficiently non-degenerate situations the
dimension and the entropy are the only 1-cocycles.

Theorem0.12. The cohomologyH1(S,X ) over a sufficiently rich grassmannian information
structure is the space of functions

ΦV (ρ) � −aS(ρ) + b dim(A(ρ)), (0.63)

where a and b are arbitrary real constants.

For gaussian probabilities, the fact that differential entropy is a 1-cocycle is equiv-
alent Schur’s determinantal formula

det
(
A B
C D

)
� det(A)det(D − BA−1C); (0.64)

this recurrence relation is thus comparable to the chain rule for entropy or the
multiplicative relations for multinomials, discussed in Sections 0.2 and 0.3.

Themoments, in turn, appear as certain locally invariant natural transformations.
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Chapter 1

Information structures

1.1 Random variables and probabilities

This first section contains some definitions and notations coming from elementary
probability theory. For the sake of completeness, we also recall the definition of
information structuregiven in [10], althoughweworkwith ageneralization, introduced
in Section 1.2. some context and elementary definitions; it also fixes some notations.
It can be skipped by a reader already familiarized with probability theory.

An algebra of setsF over a set Ω is a collection of subsets of Ω such that:
1. ∅ and Ω are inF;
2. F is closed complementation: if A ∈ F, then Ac :� Ω \ A ∈ F;
3. F is closed under finite unions: given any A, B ∈ F, one has A ∪ B ∈ F.

It is called a σ-algebra if it is also closed under countable unions, and the pair (Ω,F)
is then called a measurable space. When the algebra is finite, its elements are all the
possible unions of its minimal sets (in the sense of inclusion), called atoms; the atoms
are said to generate the algebra. Given any collection C of subsets ofΩ, the σ-algebra
generated by C—denoted by σ(C)—is the smallest σ-algebra that contains C.

Let Ω be a set representing the collection of all possible ‘elementary events’
of a given experience. For us, a random variable is a function X on Ω taking
values in a measurable space (EX ,EX), that corresponds to the possible outputs
of a measurement; in applications, the codomain is usually (Rn ,B(Rn)) or a finite
set E with the σ-algebra P(E) of all its subsets.1 Random variables are also called
observables.

Every random variable X defines a σ-algebra of subsets of Ω, given by X−1(EX).
This is usually called the algebra induced by X, we shall denote it σ(X). When
σ(Y) ⊂ σ(X), we say that σ(Y) is coarser than σ(X), or even that Y is coarser than X;
alternatively, σ(X) is finer than σ(Y) or refines σ(Y).

In Part II, we suppose that each random variable takes a finite number of different
values, EX � {x1 , ..., xn}; to emphasize this we talk sometimes about finite random
variables. Accordingly, we set (EX ,P(EX)) as codomain of X, and we drop P(EX)
from the notation. Continuous variables reappear in Part IV.

1It is common to fix a σ-algebra F over Ω and define a random variable as a function X : (Ω,F) →
(EX ,E) that is F/E-measurable, i.e. for all S ∈ E, X−1(S) ∈ F. Here, we take a different point of view:
an arbitrary function X to a measurable space defines a σ-algebra σ(X) on Ω.
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When the variables are finite, the subsets { ω ∈ Ω | X(ω) � x } ⊂ Ω, for x ∈ EX ,
are the atoms of σ(X), and they form a partition of the space Ω.2 Conversely, to any
finite partition {Ω1 , ...,Ωn} of Ω, one can associate a random variable

∑n
i�1 aiχΩi ,

where χΩi denotes the indicator function and the numbers {a1 , ..., an} ⊂ R (or any
ring) are all different. Two such random variables can differ in the values they take,
but both are equally good to “discriminate” between elementary outcomes. Two
random variables are equivalent for us if they define the same partition of Ω. The
terms ’random variable’ and ’partition’ will be used interchangeably throughout Part
I and II.

We define now a category Obsfin(Ω) of finite observables, whose objects are all the
finite partitions of Ω. There is an arrow between two objects X and Y, given by a
surjection π : X → Y, whenever Y is a refinement of X (this means, σ(Y) ⊂ σ(X));
each subset B ∈ Y equals ∪A∈π−1(B)A. In this case, X discriminates better between
elementary outcomes. The category Obsfin(Ω) has a terminal element: the trivial
partition 1 :� {Ω}. When Ω is finite, it also has an initial element: the partition
by points, that we denote by 0. The categorical product X × Y of two partitions X
and Y is the coarsest partition that refines both. This product is commutative and
associative. Moreover, given any element X, we have XX � X (idempotency), 0X � 0
and 1X � X.

Definition 1.1. A classical, concrete and finite information structure3 S is a full
subcategory of Obsfin(Ω) that satisfies the following properties:

1. The partition 1 is in Ob S.
2. for every X,Y, Z in Ob S, if X → Y and X → Z, then YZ belongs to S.4

A big family of examples can be obtained as follows: let Ω be a set and Σ �

{ Si : Ω → Ei | 1 ≤ i ≤ n } an arbitrary collection of finite variables. Any subset
I :� {i1 , ..., ik} of [n] � {1, ..., n} defines a new partition by means of the product
already described, SI :� Si1 · · · Sik ; by convention, S∅ :� 1. Let W(Σ) be the full
subcategory Obsfin(Ω) with objects {SI | I ⊂ [n]}. Since W(Σ) contains all the
products by construction, it is an information structure. Algebraically, W(Σ) has the
structure of a commutative idempotent monoid, with identity 1.

Suppose now that Ω �
∏

i∈[n] Ei , where |Ei | ≥ 2 for all i, and Si : Ω → Ei is
the i-th canonical projection (i � 1, ..., n). Under these assumptions, SI , SJ , as
partitions, whenever I , J, and SI → SJ implies that J ⊂ I.5 In consequence, there
is an injection ι : ∆([n]) → Ob(W(Σ)), I 7→ SI , where ∆([n]) denotes the abstract
simplex of dimension n − 1 (see Appendix B). Let K be a simplicial subcomplex
of ∆([n]); by ι, it determines a full subcategory of W(Σ), to which we add S∅ as a
terminal object, constructing this way a new category S(K), that is an information

2In the sequel, { ω ∈ Ω | X(ω) � x } is simply written {X � x}.
3We simplify the name to ’concrete structures.’
4It would be simpler to take S cartesian. But we already know that, in quantum mechanics, some

joint measurements are incompatible. We would like to describe the classical and quantum cases with
the same axioms; in the classical case, this just adds flexibility.

5Proof: for any I ⊂ [n],
σ(SI ) � {S−1

I (A) | A ∈
⊗
i∈I

Ei}

and every set S−1
I (A) has the form

∏
i∈[n] Fi with Fi � Ei whenever i < I. If J 1 I, say j∗ ∈ J \ I, then in

general S j∗(S−1
J (A)), with A ∈

⊗
j∈ J Ei , will differ from Ei , proving that S−1

J (A) is not in σ(SI ).
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S1

S2

S3S1S3

S2S3S1S2

S1S2S3

Figure 1.1: Identification of ∆([3]) as the nontrivial part of W(S1 , S2 , S3). We have depicted
also the barycentric subdivision, that has one point for each variable.

structure too. In fact, the diagram

SJ ← SI → SL ,

means that J and L are faces of I (for this, we need |Ei | ≥ 2; see Remark 1.3 bellow);
therefore, J ∪ L is also a face of I, that belongs to K by the simplicial condition;
J ∪ L ∈ K implies that SJ∪L � SJSL ∈ Ob(S(K)).

Example 1.2. TakeΩ � {0, 1}3, and consider the projections Si : Ω→ {0, 1} such that
(x1 , x2 , x3) 7→ xi , for i ∈ {1, 2, 3}. Taking all the possible joint variables, we obtain the
monoid depicted in Figure 1.1. However, if we forbid the maximal face S1S2S3, we
obtain a new information structure, which is not a monoid. This could be linked to
physical constraints related to measurements.

Remark 1.3. Bennequin and Baudot [10] define the structures S(K) for any collection
of finite variables Σ :� { Si : Ω→ Ei | 1 ≤ i ≤ n }. However, these structures do not
satisfy in general the axiom (2) above: for instance, letΩ be {0, 1}2; Xi , the projection
on the i-th component (i � 1, 2), and X3 � {{(0, 0)}, {(0, 0)}c}. Define K as the
simplicial subcomplex of ∆([3]) with maximal faces {{1, 2}, {3}}. The product X1X2
is the atomic partition, that refines all the others, while some products (like X1X3)
are not in S(K).

A probability law on general measurable space (Ω,F) is a function P : F→ [0, 1]
such that:

1. P(Ω) � 1.
2. Given a collection of pair-wise disjoint sets {Ai}i∈N ⊂ F,

P

( ∞⋃
i1

Ai

)
�

∞∑
i�1

P(Ai). (1.1)

This property is called σ-additivity.
When F is finite, we denote by Π(F) the set of all possible laws on (Ω,F). If F

has N atoms, say {a1 , ..., aN}, then the probability laws on (Ω,F) can be identified
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with functions p defined on the atoms, such that
∑N

i�1 p(ai) � 1. In this sense,Π(F) is
a simplex embedded in RN ; as such, can be considered a measurable space in itself
(this is important in Section 3.1). For convenience, we identify each vertex δi ofΠ(F)
with the corresponding atom ai , such that δi(ai) � 1. The measure δi is called the
Dirac (δ-)measure on ai . More generally, we shall consider a simplicial subcomplex
of Π(F), denoted by QF.

Classically, the law of a random variable X : (Ω,F, P) → (EX ,E) is the image
measure X[P] � P ◦ X−1 : E → [0, 1]. Since a law is completely determined by
the restriction of P to σ(X), the set Π(σ(X)) contains all possible laws for X. Given
π : X → Y in Obsfin(Ω), define the application π∗ : Π(σ(X)) → Π(σ(Y)) that
associates to any law P on (Ω, σ(X)) a new law π∗P on (Ω, σ(Y)) given by

π∗P(BY) � P(BY), for all BY ∈ σ(Y) ⊂ σ(X). (1.2)

This is called marginalization by Y. We write Y∗ instead of π∗ when π is clear from
the context. Explicitely, for each y ∈ Y,

π∗P(y) �
∑

x∈π−1(y)
P(x). (1.3)

Proposition 1.4. Let X,Y be variables onΩ, π : X → Y. If QX is a simplicial subcomplex
of Π(σ(X)), then π∗QX is a simplicial subcomplex of Π(σ(Y)).

Proof. Remark that π∗ maps the convex combination P �
∑

x∈EX λ(x)δx to the convex
combination π∗P �

∑
y∈Y

(∑
x∈π−1(y) λ(x)

)
δy . Let σ be a simplex of QX , with vertices

{δx1 , ..., δxn }. Each xi refines the corresponding atom π(xi) ∈ Y; clearly, π∗(δxi ) �
δπ(xi). Let {y1 , ..., ym} be the set of images of {x1 , ..., xk} under π. The map π∗
sends convex combinations of {δx1 , ..., δxn } to convex combinations of {δy1 , ..., δyk },
and hence the simplex σ � [δx1 , ..., δxn ] to the simplex [δy1 , ..., δyk ]. Given a face ρ
with vertices V ⊂ {δy1 , ..., δyk }, there is a corresponding face σ′ of σ with vertices
π−1(V)∩{δx1 , ..., δxn }, that is necessarily inQX by thedefinitionof simplicial complex,
and π∗(σ′) � ρ, showing that ρ is in π∗QX . �

Given an information structure S, a probability functor Q : S → Sets is a rule
that assigns to each variable X ∈ Ob S a simplicial subcomplex of Π(σ(X)), denoted
simply QX , and to each arrow of refinement π : X → Y, the simplicial mapping
Q(π) : QX → QY given by the marginalization P 7→ π∗P.

Proposition 1.4 shows that we can obtain examples in a standard way: given a
measurable space (Ω,F) with F finite, and a family of measurable functions on it
(forming an information structure), fix initially a subcomplex QF of Π(F) and, for
each variable X, define QX :� X∗QF ⊂ Π(σ(X)).

Another fundamental operation is conditioning. Let X : (Ω,F) → EX be a
random variable, P a law of Π(F) and P(X � x) , 0 for certain x ∈ EX . Then, it is
possible to define a new probability law P |X�x on (Ω,F), called conditional law and
given by

P |X�x(B) ≡ P(B |X � x) :�
P(B ∩ {X � x})

P(X � x) . (1.4)

Proposition 1.5. With the previous notation, if P belongs to a simplicial subcomplex Q of
Π(F) and P(X � x) > 0, the law P |X�x also belongs to Q.
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Proof. Suppose that the minimal face σ that contains P has vertices V � {δa1 , ..., δak }
(maybe just one): this means that P(a) > 0 for all a ∈ V and P(a′) � 0 for all other
atom a′. The set V′ :� {a atom ofF | P(a ∩ {X � x}) > 0} is contained in V , because
P(a ∩ {X � x}) ≤ P(a). The minimal face that contains P |X�x is that of vertices V′,
which is a face of σ, and therefore contained in Q. �

A probability family Q and an information structure S are mutually adapted, if
the conditioning of any law in Q by an element of S belongs to Q. In particular,
simplicial families are adapted: ifX is anyvariable coarser thanY andQY is simplicial
complex, Proposition 1.4 (applied to F � σ(Y) and Q � QY) implies that P |X�x
belongs to QY (when it is well defined).

1.2 Category of information structures

We introduce here the general notion of statistical space motivated in the Introduc-
tion. It is flexible enough to cover all the situations where information cohomology
has been studied: discrete and continuous classical random variables as well as finite
dimensional quantum systems.

Definition 1.6. An information structure is a pair (S, E ), where S (‘the variables’) is
a small category such that

1. S has a terminal object, denoted 1;
2. S is a skeletal partially ordered set (poset).6
3. for objects X,Y, Z ∈ Ob S, if Z → X and Z → Y, then the categorical product

X ∧ Y exists;7
and E : X 7→ (EX ,BX) is a conservative8, 9 covariant functor (‘the possible values’)
from S into the category Meas of measurable spaces, that satisfies

4. E1 � {∗}, with the trivial σ-algebra B1 � {∅, E1};
5. for every X ∈ Ob S and any x ∈ EX , the σ-algebra BX contains the singleton
{x};

6. for every diagram X X ∧ Y Y←→π ←→σ the measurable map EX∧Y ↪→
EX × EY , z 7→ (x(z), y(z)) :� (π∗(z), σ∗(z)) is an injection.

To simplify notation, we usually write π∗ or even π instead of E (π).
Even if the axiom (3) in Definition 1.6 is the obvious analogue of the conditional

existence of products imposed in Section 1.1, only (6) allows us to recover the good
properties of the product of partitions. See the proof of Proposition 3.1.

The structure (S, E ) is said to be bounded if the nerve of S has finite dimen-
sion. Unbounded structures appear, for instance, in the study of Markov chains, as
projective systems of measurable spaces, see [71, Ch. 8].

The structure is said to be finite if all the sets EX are finite. In this case, EX
corresponds to the atoms ofBX , and the algebra can be omitted from the description,

6Being a poset means that, for any objects A and B, Hom(A, B) has at most one element. The poset
is skeletal if it has no isomorphisms different from the identities: if A , B and A→ B, then B 6→ A.

7This could be called “conditional meet semi-lattice”.
8Given a functor F : S→ Sets, we denote its value at X ∈ Ob S by F (X) or FX .
9Conservative means that, if E ( f ) is an isomorphism, then f is an isomorphism. Since S is skeletal,

this condition implies that, for every arrow π : X → Y such that X , Y, the measurable map
π∗ :� E (π) : E(X) → E(Y) is not a bĳection.
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and we denote the structure by (S, E). For example, probabilities on BX are in
bĳective correspondence with maps p : EX → [0, 1] such that

∑
x∈EX p(x) � 1, etc.

All concrete information structures S, as defined in Section 1.1, are examples of
finite generalized information structures, taking E to be the identity functor. In the
general case, we still call X ∈ Ob S a partition (also: variable, observable) and the
elements inEX (denoted alsoE(X)) are interpreted as the elements of this partition (or
the possible values of the variable). In general, we can transfer to general information
structures all the notations and notions from the previous section. For example, the
set-theoretical notation {X � x} simply means “the element x contained in EX” and
{X � x ,Y � y} should be interpreted as the element z of EX∧Y mapped to x by
EX∧Y → EX and to y by EX∧Y → EY (if such z does not exist, write {X � x ,Y � y} �
∅); the uniqueness of z is guaranteed by axiom (6). As before, we write XY :� X ∧ Y
and refer to this as the product of observables.

In the concrete case, for each f : X → Y in S, the map map E ( f ) is a strict
surjection, but we do not suppose this in general. Sums over the empty set equal
zero, and products over the empty set equal one; with this conventions, expressions
like

∑
x∈E ( f )−1(y) a(x) give the expected results.

The definitions and propositions in this section are also valid for infinite struc-
tures, but a more detailed study of these is postponed to Part IV.

The definition of W(Σ) introduced in Section 1.1 is more natural in this context.
Let I be a finite set, and ∆(I) be the category of subsets of I, with arrows I → J
whenever J ⊂ I. Set S � ∆(I). Let Ei � (Ei ,Bi) be arbitrary measurable sets such
that |Ei | ≥ 2, and associate to I �

∧
i∈I{i} the product measurable space

∏
i∈I Ei ; the

maps E (π) : E (I) → E (J), for each π : I → J, are the canonical projectors. There is
no need to consider all the abstract simplicial complex ∆(I), S could be a simplicial
subcomplex K of ∆(I), and E the restriction of the functor just defined; we obtain in
this way a simplicial information structure S(K).

Information structures form a category.

Definition 1.7. Given two structures (S, E ), (S′, E ′), a morphism φ � (φ0 , φ#) :
(S, E ) → (S′, E ′) between them is a functor φ0 : S → S′ and a natural transfor-
mation φ# : E ⇒ E ′ ◦ φ0, such that

1. φ0(1) � 1;
2. if X ∧ Y exists, then φ0(X ∧ Y) � φ0(X) ∧ φ0(Y);
3. for each X ∈ Ob S, the component φ#

X : E (X) → E ′(φ0(X)) is a measurable
map.

Given φ : (S, E ) → (S′, E ′) and ψ : (S′, E ′) → (S′′, E ′′), their composition ψ ◦ φ is
defined as (ψ0 ◦ φ0 , ψ# ◦ φ# : E ⇒ E ′′ ◦ ψ0 ◦ φ0) (it is easy to verify that ψ ◦ φ is also
a morphism). If there is no risk of ambiguity, we write φ instead of φ0.

We denote by InfoStr the category of information structures and its morphisms
in the sense just defined.

Note that, if X ∧ Y exists, then φ0(X ∧ Y) → φ0(X) and φ0(X ∧ Y) → φ0(X), and
thus the product φ0(X) ∧ φ0(Y) exists too, in virtue of Definition 1.6-(3).

This simple definition of amorphism between information structures and the cor-
responding construction of products and coproducts is one of the main motivations
for this generalized setting.

Proposition 1.8. The category InfoStr has finite products and coproducts.
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Proof.
Products: Given information structures (S1 , E1) and (S2 , E2), we introduce first the
ordinary categorical productS � S1×S2: its objects are all the pairs 〈X1 ,X2〉withXi ∈
Ob Si (i � 1, 2); there is an arrow 〈π1 , π2〉 : 〈X1 ,X2〉 → 〈Y1 ,Y2〉 whenever πi : Xi →
Yi in Si (i � 1, 2). Let E : S → Sets be a functor X 7→ E (X) � (E(X),B(X)) defined
by E(〈X1 ,X2〉) � E1(X1) × E2(X2) and B(〈X1 ,X2〉) � B(X1) ⊗ B(X2), the product σ-
algebra (see [19, Sec. 5.1]). The projections are simply given by E (〈π1 , π2〉) � E1(π1)×
E2(π2), which comes from the product in Sets. The pair (S, E ) is an information
structure:

• S is a small category, with terminal object 〈1S1 , 1S2〉;
• S is a skeletal poset: for 〈X1 ,X2〉 , 〈Y1 ,Y2〉,

Hom(〈X1 ,X2〉, 〈Y1 ,Y2〉) , ∅ ⇔ X1 → Y1 and X2 → Y2

⇔ Y1 6→ X1 or Y2 6→ X2

The last equivalence, because both arrows cannot be identities. Therefore,

Hom(〈Y1 ,Y2〉, 〈X1 ,X2〉) � ∅;

• Given 〈X1 ,X2〉, 〈Y1 ,Y2〉 and 〈Z1 , Z2〉 such that 〈X1 ,X2〉 → 〈Y1 ,Y2〉 and 〈X1 ,X2〉 →
〈Z1 , Z2〉, then Yi Xi Zi←→

πYi ←→
πZi in Si (i � 1, 2). By the conditional exis-

tence of products in Si , Yi ∧ Zi exists (i � 1, 2) and evidently 〈Y1 ∧ Z1 ,Y2 ∧ Z2〉
is the infimum of 〈Y1 ,Y2〉 and 〈Z1 , Z2〉 in S,

〈Y1 ,Y2〉 ∧ 〈Z1 , Z2〉 � 〈Y1 ∧ Z1 ,Y2 ∧ Z2〉.

• E(〈1S1 , 1S2〉) � {(∗, ∗)}, with trivial algebra;
• For i � 1, 2 and any xi ∈ E(Xi), the singleton {xi} is an element ofB(Xi); so the

product {x1} × {x2} � {(x1 , x2)} belongs to B(〈X1 ,X2〉).
• The argument above gives the following diagram in S:

〈Y1 ,Y2〉 〈Y1 ∧ Z1 ,Y2 ∧ Z2〉 〈Z1 , Z2〉,←→〈πY1 ,πY2 〉 ← →
〈πZ1 ,πZ2 〉

where Yi Yi ∧ Zi Zi←→

πYi ←→
πZi is the diagramof the product inSi (i � 1, 2).

Given (y1 , y2) ∈ E(〈Y1 ,Y2〉) and (z1 , z2) ∈ E(〈Z1 , Z2〉),

〈πY1 , πY2〉−1
∗ (y1 , y2) ∩ 〈πZ1 , πZ2〉−1

∗ (z1 , z2)
�

{
πY1
−1
∗ (y1) × πY2

−1
∗ (y2)

}
∩

{
πZ1
−1
∗ (z1) × πZ2

−1
∗ (z2)

}
�

{
πY1
−1
∗ (y1) ∩ πZ1

−1
∗ (z1)

}
×

{
πY2
−1
∗ (y2) ∩ πZ2

−1
∗ (z2)

}
.

Thus |〈πY1 , πY2〉−1
∗ (y1 , y2) ∩ 〈πZ1 , πZ2〉−1

∗ (z1 , z2))| ≤ 1.
For each i ∈ {1, 2}, we define functors πSi : (S, E ) → (Si , Ei) such that πSi 0

maps each 〈X1 ,X2〉 to Xi , and each morphism 〈 f1 , f2〉 to fi . At the level of E , let
π#

Si
: E1(X1) × E2(X2) → Ei(Xi) be the canonical projection. These formulae define

morphisms of information structures. We claim that S, with the projections

(S1 , E1) (S, E ) (S2 , E2),←→

πS1 ←→
πS2
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is the product of (S1 , E1) and (S2 , E2) in InfoStr, written (S1 , E1) × (S2 , E2), unique up
to unique isomorphism. In fact, given (S1 , E1) (R,F ) (S2 , E2),←→f1 ←→f2 define
〈 f1 , f2〉 : (R,F ) → (S, E ) as

〈 f1 , f2〉0 :R→ S
R 7→ 〈 f1(R), f2(R)〉

for any object or morphism R; given an variable X ∈ R, the map φ#
X : F (X) →

E (〈 f1(X), f2(X)〉) � E1( f1(X)) × E2( f2(X)) is the product f1
#
X × f2

#
X of the maps fi

#
X :

F (X) → Ei( fi(X)). Evidently, πSi ◦ 〈 f1 , f2〉 � fi for i � 1, 2.
Coproducts: Given information structures (S1 , E1) and (S2 , E2), define a category S
such that Ob S � Ob S1 t Ob S2/1S1 ∼ 1S2 and A → B in S if and only if A → B in
S1 or in S2. Define a functor E : S→ Sets such that E (X) � Ei(X) if X ∈ Ob Si. The
pair (S, E ) is an information structure: axioms (2), (3) and (6) in Definition 1.6 are
verified locally in S1 or S2.

Injections ιi : Si → S are defined in the obvious way: ιi(A) � A for A ∈ Ob Si or
A ∈ Hom(Si); the corresponding maps ιi#

X are identities. If

(S1 , E1) (R,F ) (S2 , E2)←→f1 ←→f2 ,

define

〈 f1 , f2〉0 :S→ R

A 7→
{

f1(A) if A ∈ Ob S1 or A ∈ Hom(S1)
f2(A) otherwise

.

and, if X ∈ Ob Si, set 〈 f1 , f2〉#X � fi
#
X . By construction, 〈 f1 , f2〉 ◦ ιi � fi . Therefore,

(S, E ) is the coproduct of (S1 , E1) and (S2 , E2) in InfoStr, denoted (S1 , E1)
∐(S2 , E2),

which is unique up to unique isomorphism. �

Remark 1.9. If (S1 , E1) and (S2 , E2) are bounded structures, their product and co-
product are bounded too. In fact, if the dimension of Nerve(Si) is Ni (i � 1, 2),
then the dimension of Nerve(S1 × S2) is N1 + N2 and that of Nerve(S1

∐
S2) equals

max(N1 ,N2). Similarly, if both are finite, their product and coproduct is finite too.

Remark 1.10. If each measurable space (E(X),B(X)) appearing in S1 and S2 verifies
that E(X) is second countable topological space andB(X) is its Borel σ-algebra, then
each algebraB(X1)⊗B(X2) on E(X1)×E(X2) equals the Borel σ-algebra on this space,
see Proposition 9.1.

Example 1.11.

1

0

← → ×
1

0

← → �

(1, 1)

(1, 0) (0, 1)

(0, 0)

← → ←

→

← →←

→
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and
1

0

← →

∐ 1

0

← → �
1

0 0

← → ←

→

1.3 Probabilities on finite structures
We introduce nowprobabilities on finite information structures. Continuous random
variables are treated in Part IV.

Let S be a finite information structure and Π : S→ Sets a functor that associates
to each X ∈ Ob S the set

Π(X) :� { p : EX → [0, 1] |
∑

x∈EX

p(x) � 1 }, (1.5)

of probability laws for X, and to each arrow π : X → Y the natural marginalization

∀P ∈ QX , ∀y ∈ EY Π(π)(P)(y) �
∑

x∈π−1
∗ (y)

P(x). (1.6)

More generally, a probability functorQ on an information structure (S, E) is a functor
Q : S→ Sets such that, for every X ∈ Ob S, the set QX is a subcomplex of Π(X) and
each arrow π : X → Y is sent to Q(π) � Π(π)|QX , written simply π∗ or even Y∗ to
simplify the notation.

We adopt the probabilistic notation, in the following sense: if X,Y ∈ Ob S,
πYX : X → Y in S, PX ∈ QX , and for y ∈ E(y), the notation PX(Y � y) means
P(πYX

−1
∗ (y)) � πYX∗P(y); similarly, if Y X Z←→πYX ←→πZX is a diagram in S, the

notation PX(Y � y , Z � z) ≡ PX({Y � y}∩ {Z � z})means PX(πYX
−1
∗ (y)∩πZX

−1
∗ (z)),

which equals PX(〈πYX , πZX〉−1
∗ (w(y , z))) for the unique w(y , z) sent to (y , z) by the

injection in Definition 1.6-(6).
Given an arrow πZX : X → Z and a law P ∈ Π(X), the conditional law P |Z�z is

defined by

P |Z�z(x) :�
P(x ∩ {Z � z})

P(Z � z) �
P(x ∩ π−1

ZX(z))
P(Z � z) . (1.7)

We say that the functor Q is adapted if it is stable by conditioning: for every arrow
X → Z in S, every law P ∈ QX , and every z ∈ EZ, P |Z�z ∈ QX .

Conditioning commutes with marginalizations: given arrows πYX : X → Y and
πZY : Y → Z,

πYX
∗ (P |Z�z)(y) �

∑
x∈π−1

YX(y)

P({x} ∩ π−1
ZX(z))

P(Z � z) �

∑
x∈π−1

YX(y)
P({x} ∩ π−1

ZX(z))
P(Z � z)

�
P(π−1

YX(y) ∩ π
−1
YX(π

−1
YZ(z)))

P(Z � z) �
πYX
∗ P(y ∩ π−1

YZ(z))
πYX
∗ P(Z � z)

� (πYX
∗ P)|Z�z(y).

Let Qi be a probability functor on (Si , Ei) (i � 1, 2). We define:
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1. Q1 ×Q2 : S1 × S2 → Sets as a functor that associates to each object 〈X1 ,X2〉 ∈
Ob S1 × S2 the set of laws:

Q1×Q2(〈X1 ,X2〉) :� { P : E1(X1)×E(X2) → [0, 1] | ∃P1 ∈ Q1(X1), ∃P2 ∈ Q2(X2)
such that P(x1 , x2) � P1(x1)P2(x2) }. (1.8)

If two pairs (P1 , P2), and (P′1 , P′2) correspond to the same law P : E1(X1) ×
E(X2) → [0, 1], we can marginalize one of the components under the arrow
π1 : X1 → 1S1 to conclude that P2 � P′2; analogously, P1 � P′1. Therefore,
what we call Q1 × Q2(〈X1 ,X2〉) is in bĳection with the usual product of sets
Q1(X1) ×Q2(X2); we write P � (P1 , P2).
For each morphism 〈X1 ,X2〉

〈π1 ,π2〉→ 〈Y1 ,Y2〉 the induced map

Q1 ×Q2(〈X1 ,X2〉)
Q(〈π1 ,π2〉)→ Q1 ×Q2(〈Y1 ,Y2〉)

(see Equation (1.6)) is compatible with marginalizations: for every (y1 , y2) ∈
E(〈Y1 ,Y2〉),

[Q(〈π1 , π2〉)(P1 , P2)](y1 , y2)
(def)
�

∑
(x1 ,x2)∈〈π1 ,π2〉−1

∗ (y1 ,y2)

(P1 , P2)(x1 , x2)

�

∑
x1∈π1

−1
∗ (y1)

P1(x1)
∑

x2∈π2
−1
∗ (y2)

P2(x2)

� [Q(π)(P1)](x1)[Q(π2)(P2)](x2).

We summarize this with the formula

Q(〈π1 , π2〉)(P1 , P2) � (Q(π1)(P1),Q(π2)(P2)). (1.9)

2. Q1
∐

Q2 : S1
∐

S2 → Sets, a functor that coincides with Q1 on the S1 andwith
Q2 on S2.

Example 1.12. Let X : Ω → EX be a finite random variable; it defines a concrete
structure S given by X → 1. Let QX be collection of probability laws on X. The
product S×n :� S × ... × S (n times) represents n independent trials, not necessarily
identically distributed. In fact, an element P ∈ Q×n

X is a probability law P : En
X →

[0, 1]which can be factored as P1P2 · · · Pn , where each Pi ∈ QX .

1.4 Classical models of finite structures

In this section, we formalize the relation between finite information structures and
usual probability spaces. A finite information structure (S, E) is said to be quasi-
concrete if for each nonidentity arrow f : X → Y in S, the map E ( f ) is a strict
surjection. Concrete information structures are quasi-concrete, but the converse is
not always true, as explained in this section.

Recall that Obsfin(Ω) denotes the poset of finite partitions of a set Ω, ordered by
the relation of refinement, with arrows implementing the corresponding surjections
(see Section 1.1).
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Definition 1.13. A classical model of a quasi-concrete information structure (S, E) is
a triple (Ω, ρ0 , ρ#), whereΩ is a set, ρ0 : S→ Obsfin(Ω) is a functor, and ρ# : E→ ρ0
is a natural transformation such that:

1. ρ0 is injective on objects;
2. For each X ∈ Ob S, the component ρ#

X : E(X) → ρ0(X) is a bĳection;
3. If X ∧ Y exists, ρ0(X ∧ Y) � ρ0(X) × ρ0(Y).

We also refers to (Ω, ρ) as a representation of (S, E).

If (Ω, ρ0 , ρ#) is a classicalmodel ofS, each observable X inS can be associated (not
uniquely) to a function X̃ onΩ, in such a way that ρ(X) is the partition induced by X̃.
Under this representation as functions, all observables commute. It is also possible
to introduce quantum models, which respect the noncommutativity of quantum
observables, see Section 1.5.

A concrete information structure, as defined in Section 1.1, can be seen as a
classical model of an underlying generalized information structure. We now show
that, in certain cases, limS E provides a model for a structure (S, E). In general, if we
begin with a concrete structure S ⊂ Obsfin(Ω) and forget Ω to obtain a generalized
structure (�S, E � id), the set limS E is different from Ω. See Example 1.20.

When ρ0(S) is an information structure, (ρ0 , ρ#) is a morphism in InfoStr, but the
following example shows that this is not always the case.

Example 1.14. Let S be the simplicial subcomplex of ∆([3])with maximal faces {1, 2}
and {3}; supposeE is such thatE1 � E2 � E3 � {0, 1}, E{1,2} � E1×E2, andE{1,2} → Ei ,
i � 1, 2 are the canonical projections. The pair (S, E) is a finite information structure,
that can be represented on Ω � {0, 1}2 mapping Xi to the partition induced by the
projection pri : {0, 1}2 → {0, 1}, when i � 1, 2, and X3 to {{(0, 0)}, {(0, 0)}c}. As
we established in Remark 1.3, ρ0(S) is not a concrete information structure. This
illustrates the difference between concrete and generalized structures.

Given a structure (S, E), the limit of E corresponds to

lim
S

E :� Hom[S,Sets](∗, E), (1.10)

where [S, Sets] is the category of functors from S to sets and ∗ is the functor that
associates to each object a one-point set; equivalently

lim
S

E �

{
(sZ)Z∈Ob S ∈

∏
Z∈Ob S

E(Z)
�� E(πYX)(sX) � sY for all πYX : X → Y

}
, (1.11)

where sZ denotes ϕ(∗) for any ϕ ∈ Hom[S,Sets](∗, E). The requirements imposed
on (sZ)Z∈Ob S in (1.11) are referred hereafter as ‘compatibility conditions’. We de-
note the restriction of each projection πE(X) :

∏
Z∈Ob S E(Z) → E(X) to limS E by

the same symbol. We interpret the limit as all possible combinations of compatible
measurements.

Proposition 1.15. If a quasi-concrete structure (S, E) has a classical model (Ω, ρ0 , ρ#), then,
irrespective of the choice of x ∈ E(X), with X ∈ Ob S, there exists an element s(x) ∈ limS E
such that πE(X)(s(x)) � x.
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Proof. Use the bĳection ρ#
X : E(X) → ρ0(X), to identify x ∈ E(X) with certain subset

ρ#
X(x) of Ω. Take any ω ∈ ρ#

X(x) and then define s(x)Z as the part z ∈ EZ such that
ω ∈ ρ#

Z(z). This section has the desired property. �

Remark 1.16. We could have introduced this necessary condition for representability
in the definition of information structure, but there are twogood reasons to avoid this.
First, it is completely irrelevant for the cohomological computations. Second, and
more importantly: information structures are sufficiently flexible tomodel contextual
situations, that arise when data is locally consistent, but globally inconsistent. This
happens in different domains, notably in quantummechanics and in database theory.
In the terminology of [1, Sec. 3], a structure is said to be logically contextual at a value
x ∈ EX if x belongs to no compatible family of measurements (there is no section
s(x) ∈ limS E such that πE(X)(s(x)) � x), and strongly contextual if E does not accept
any global section, i.e. limS E � ∅.
Definition 1.17. An (arbitrary) information structure is noncontextual if, for all X ∈
Ob S and all x ∈ E(X), there exists an element s(x) ∈ limS E such that πE(X)(s(x)) � x.

Proposition 1.18. The product and the coproduct of two noncontextual structures is non-
contextual.

Proof. Let S1 and S2 be noncontextual structures. We use the notations in the proof
of Proposition 1.8.

Products: Consider a point (x1 , x2) ∈ E(〈X1 ,X2〉). There exist sections

s i(xi) � (s i
Z(xi))Z∈Ob Si ∈ lim

S
Ei ⊂

∏
Z∈Ob Si

E(Z),

such πEi(Xi)(s(xi)) � xi (for i � 1, 2). Note that the vector

s(x1 , x2) :� (s1
Z1
(x1), s2

Z2
(x2))〈Z1 ,Z2〉∈Ob S ∈

∏
〈Z1 ,Z2〉∈Ob S

E(〈Z1 , Z2〉)

satisfies all the compatibility conditions and is therefore in limS E. By definition,
πE(〈X1 ,X2〉)(s(x1 , x2)) � (x1 , x2).

Coproducts: given X ∈ S1, x ∈ E(X), there exists s1(x) � (sZ(x))Z∈Ob S1 ∈
limS1 E1 satisfying πE(X)(s1(x)) � x, and similarly for E2; we can build a new vector
(sZ(x))Z∈Ob S ∈ Ob S1 tOb S2 such that sZ � s i

Z if Z ∈ Ob Si; luckily, for 1 there is no
choice. �

Define ρ̃0 : S→ limS E as follows: associate to X ∈ Ob S the collection ρ̃0(X) :�
{π−1

E(X)(x)}x∈E(X), which is a partition of limS E, and none of the parts is ∅ as long as
S is noncontextual; ρ̃#

X maps x ∈ E(X) to π−1
E(X)(x). Given πYX : X → Y, there is a

corresponding arrow ρ̃(X) → ρ̃(Y) in Obsfin(Ω), which is equivalent to ρ̃(Y) ⊂ ρ̃(X).
The existence of such arrow is ensured by the equality

π−1
E(Y)(y) �

⋃
x∈E(πYX)−1(y)

π−1
E(X)(x). (1.12)

It is proved as follows: if x ∈ E(πYX)−1(y) and s ∈ π−1
E(X)(x), then

πE(Y)(s) � E(πYX)(πE(X)(s)) � E(πYX)(x) � y ,
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which means ∪x∈E(πYX)−1(y)π
−1
E(X)(x) ⊂ π−1

E(Y)(y); to prove the other inclusion, take
s � (sZ)Z∈Ob S ∈ π−1

E(Y)(y) and note that sX must satisfy—by definition—the compat-
ibility condition E(πYX)(sX) � sY � y, thus sX ∈ E(πYX)−1(y) and s itself belong to
∪x∈E(πYX)−1(y)π

−1
E(X)(x).

Proposition 1.19. Let (S, E) be a quasi-concrete, noncontextual information structure.
1. The pair (limS E, ρ̃0 , ρ̃#) is a classical model of (S, E) if, and only if, for every pair of

variables X,Y such that X ∧ Y does not exist, ρ̃(X) , ρ̃(Y).
2. If (S, E) has a model (Ω, ρ, ρ∗), then (limS E, ρ̃0 , ρ̃#) is also a model (maybe the same).

Proof. Claim 1: The “only if” part is straightforward from the definitions of classical
model (injectivity of ρ0). We simply prove sufficiency.

Many properties of models are always verified by (limS E, ρ̃). The noncontex-
tuality implies that each π−1

E(X)(x) , ∅; we obtain in this way the desired bĳection
E(X) ' ρ(X). Toproveproperty (3) inDefinition1.13, take adiagramX ← X∧Y → Y,
and an arbitrary partition W of limS E that refines ρ̃(X) and ρ̃(Y). We have to show
that W also refines ρ̃(X ∧ Y). If W refines ρ̃(X), each w ∈ W (w is a subset of
limS E) is mapped to certain xw by πE(X); analogously, πE(Y)(w) � {yw}. This
means that πE(X∧Y)(w) � {zw}, where zw is the only point of E(X ∧ Y) that satis-
fies E(πX(X∧Y))(zw) � xw , E(πX(X∧Y))(zw) � yw , which means that w ⊂ π−1

E(X∧Y)(zw).
Thus, W refines ρ̃(X ∧ Y).

To prove the property 1 in Definition 1.13, consider to variables X,Y such that
X , Y. If their infimum exists, X ← X ∧ Y → Y in S, then ρ̃(X) , ρ̃(Y); we prove it
by contradiction. Each point in E(X ∧ Y) is indexed by a pair (x , y) ∈ E(X) × E(Y);
a point w ∈ E(πX∧Y)−1(x , y) ⊂ limS E goes to x under πE(X) and to y under πE(Y).
If ρ̃(Y) � ρ̃(Y), there is a bĳection y : E(X) → E(Y), x 7→ y(x) in such a way that
π−1

E(X)(x) � π
−1
E(Y)(y(x)). Therefore, the points of X ∧Y would be indexed by (x , y(x)),

with x ∈ X, in contradiction with πX(X∧Y) being a strict surjection. If moreover we
suppose that for each pair of variables such that X ∧ Y does not exist ρ̃(X) , ρ̃(Y),
then ρ̃ is injective on objects.

Claim 2: Here, we denote {X � x} the image of x ∈ E(X) under the bĳection
E(X) ∼→ ρ(X) given by property (2) in Definition 1.13. Each element ω ∈ Ω defines a
section s(ω) � (s(ω)X)X∈Ob S ∈ limS E, such that s(ω)X � x iff ω ∈ {X � x}. It is clear
that several ω could give the same section. Suppose now that ρ̃(X) ∼−→ ρ̃(Y), x 7→
y(x). If ω ∈ {X � x} ⊂ Ω, then s(ω) ∈ π−1

E(X)(x) � π−1
E(Y)(y(x)). We conclude

that ω ∈ {Y � y(x)}, and therefore ρ(X) and ρ(Y) are the same partition, only with
different labels. For ρ is injective on objects, X � Y. Use the first part to conclude. �

Example 1.20. Let Ω � {1, 2, 3, 4}. Define the partitions Xi � {{i},Ω \ {i}}, for
i � 1, ..., 4, and S as let S be the concrete information structure that includes only
the partitions X1, X2, X3, X1X2, and X2X3. The corresponding general information
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structure has as variables the free category �S generated by the graph

1

X1 X2 X3

X1X2 X2X3

←

→ ← →

←

→

←

→ ← → ←

→ ← →

and the corresponding functor E can be represented by the diagram

{x{1,2,3,4}}

{x{1} , x{2,3,4}} {x{2} , x{1,3,4}} {x{3} , x{1,2,4}}

{x{1} , x{2} , x{3,4}} {x{2} , x{3} , x{1,4}}

←

→ ← →
←

→

←

→
← →

←

→
← →

Each arrow corresponds to a surjection of finite sets, that sends xI to x J when I ⊂ J.
These are just the surjections of partitions in the original S. In this case, limS E ⊂
{∗} × E(X1) × E(X2) × E(X3) × E(X1X2) × E(X2X3) corresponds to the set

lim
S

E � {(x{1,2,3,4} , x{1} , x{1,3,4} , x{3} , x{1} , x{3}), (x{1,2,3,4} , x{1} , x{1,3,4} , x{1,2,4} , x{1} , x{1,4}),

(x{1,2,3,4} , x{2,3,4} , x{2} , x{1,2,4} , x{2} , x{2}), (x{1,2,3,4} , x{2,3,4} , x{1,3,4} , x{3} , x{3,4} , x{3}),
(x{1,2,3,4} , x{2,3,4} , x{1,3,4} , x{1,2,4} , x{3,4} , x{1,4})}.

The difference between Ω and limS E is explained by the presence of

(x{1,2,3,4} , x{1} , x{1,3,4} , x{3} , x{1} , x{3});

this measurement (where X1 � x{1}, X3 � x{3}) is impossible in the concrete structure
S ⊂ Obsfin(Ω), but the observables in (�S, E) cannot distinguish between the points
1 and 3, a sort of nonseparability. In fact, if we also include X1X3 at the beginning,
we obtain Ω � limS E.

Example 1.21. Consider the information structure given by

{∗}

{x{00,01} , x{10,11}} {x{00,10} , x{01,11}}

{x{00} , x{10} , x{1,0} , x{1,1}} {x{00} , x{10} , x{1,0} , x{1,1}}

←

→
←

→

← → ←

→
←

→
← →

where we suppose again that xI 7→ x J when I ⊂ J. Such structure cannot bemodeled
by its inverse limit, since the two minimal variables induce the same partition.

We study now the models associated to products and coproducts of structures
that already accept a model.
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LetΩ1 andΩ2 be sets. Given collectionsA � {Ai}i of subsets ofΩ1 andB � {B j} j
of subsets of Ω2, denote by A × B the collection {Ai × B j | Ai ∈ A and B j ∈ B } of
subsets of Ω1 ×Ω2. If A and B are partitions, then A ×B is a partition too.

Let (Ωi , ρ0
i , ρ

#
i ) be a model of (Si , Ei), for i � 1, 2. Associate to each variable

〈X1 ,X2〉 ∈ Ob S1 × S2 the partition of Ω1 ×Ω2 given by

ρ0
×(〈X1 ,X2〉) � ρ0

1(X1) × ρ0
2(X2). (1.13)

The map ρ#
× : E(〈X1 ,X2〉) → ρ×(〈X1 ,X2〉), where E(〈X1 ,X2〉) � E(X1) × E(X2), is

(x1 , x2) 7→ ρ#
1(x1) × ρ#

2(x2).
Analogously, for each X , 1 in Ob S1

∐
S2, let us define the partition of Ω1 ×Ω2

given by

ρ0∐(X) �
{
ρ0

1(X) × {Ω2} if X ∈ Ob S1

{Ω1} × ρ0
2(X) if X ∈ Ob S2

. (1.14)

The map ρ∐ is x 7→ ρ#
1(x) × {Ω2} or x 7→ {Ω1} × ρ#

2(x) accordingly. By convention,
ρ0∐(1) � {Ω1 ×Ω2}.

Proposition 1.22. Let (Ωi , ρi) be a classical model of (Si , Ei), for i � 1, 2. Then
1. (Ω1 ×Ω2 , ρ×) is a classical model of (S1 , E1) × (S2 , E2);
2. (Ω1 ×Ω2 , ρ∐) is a classical model of (S1 , E1)

∐(S2 , E2).

It depends on the following lemma.

Lemma 1.23. 1. If A � {Ai}i and A′ � {A′j} j are finite partitions of a set Ω, then
σ(A,A′) � σ({Ai ∩ A′j}i , j), and {Ai ∩ A′j}i , j are the atoms of σ(A,A′).

2. If A � {Ai}i , A′ � {A′j} j are two finite partitions of Ω1 and B � {Bl}l , B′ � {Bm}m
two finite partitions ofΩ2, then (A ×B)(A′ ×B′) � AA′ ×BB′, where juxtaposition
of partitions denotes their product in Obsfin(Ω), as introduced in Section 1.1.

Proof. 1. On one hand, note that each set Ai∩A′j is contained in σ(A,A′), therefore
σ({Ai ∩ A′j}i , j) ⊂ σ(A,A′). On the other, each generator Ai ∈ A of σ(A,A′) can
be written as

Ai � Ai ∩Ω � Ai ∩
©«
⋃

j

A′j
ª®¬ �

⋃
j

(Ai ∩ A′j),

and similarly for the generators A′j ∈ A′, which implies that σ(A,A′) ⊂ σ({Ai ∩
A′j}i , j). The reader can verify that {Ai ∩ A′j}i , j are atoms.

2. The previous result can be read as AA′ � {Ai ∩ A′j}i , j . The set-theoretical
identity

(Ai × Bl) ∩ (A′j × B′m) � (Ai ∩ A′j) × (Bl ∩ B′m), (1.15)

implies that the atoms of (A ×B)(A′ ×B′) and AA′ ×BB′ coincide.
�
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Proof of Proposition 1.22. Most verifications are almost immediate from the defini-
tions. We simply prove that ρ0

×(〈X1 ,X2〉 ∧ 〈Y1 ,Y2〉) � ρ0
×(〈X1 ,X2〉)ρ0

×(〈Y1 ,Y2〉). Note
that

ρ0
×(〈X1 ,X2〉 ∧ 〈Y1 ,Y2〉) � ρ0

×(〈X1 ∧ Y1 ,X2 ∧ Y2〉)
� ρ0

1(X1 ∧ Y1) × ρ0
2(X2 ∧ Y2)

� ρ0
1(X1)ρ0

1(Y1) × ρ0
2(X2)ρ0

2(Y2)
� (ρ0

1(X1) × ρ0
2(X2))(ρ0

1(Y1) × ρ0
2(Y2))

� ρ0
×(〈X1 ,X2〉)ρ0

×(〈Y1 ,Y2〉)

The first equality comes from the construction of S1 × S2; the second, from the
definition of ρ0

×; the third, from the fact that ρ0
1 and ρ0

2 are models; the fourth
equality is just a consequence of Lemma 1.23, and the fifth is just a rewriting of the
previous one. �

The partitions of Ω1 × Ω2 in the image of ρ0∐ are also in the image of ρ0
×. This

is consistent with the existence of a morphism of structures φ : (S1 , E1)
∐(S2 , E2) →

(S1 , E1) × (S2 , E2), with φ0 given at the level of objects by the injection

X 7→


1S1×S2 if X � 1S1

∐
S2

〈X, 1S2〉 if X ∈ Ob S1

〈1S1 ,X〉 if X ∈ Ob S2

, (1.16)

and the corresponding components φ#
X being the obvious bĳections: E1(X) →

E1(X) × {∗} when X ∈ Ob S1 or E2(X) → {∗} × E2(X) when X ∈ Ob S2. The model
(Ω1 × Ω2 , ρ0

× , ρ
#
×) on (S1 , E1) × (S2 , E2) restricts then to a model (Ω1 × Ω2 , ρ0

× ◦ φ0)
on (S1 , E1)

∐(S2 , E2), that coincides with (Ω1 × Ω2 , ρ0∐). This is clearly a particular
example of a more general procedure to restrict models, valid for any morphism of
structures φ � (φ0 , φ#) such that φ0 is injective on objects and each φ#

X is a bĳection;
therefore, it makes sense to call these morphims embeddings.

1.5 Quantum probability and quantum models

Let V be a finite dimensional Hilbert space: a complex vector space with a positive
definite hermitian form 〈·, ·〉. In the quantum setting, random variables are general-
ized by endomorphisms of V (operators). An operator H is called hermitian if for all
u , v ∈ V , one has 〈u ,Hv〉 � 〈Hu , v〉. A quantum observable is aHermitian operator:
the result of a quantum experiment is supposed to be an eigenvalue of such operator,
that is always a real number.

A fundamental result of linear algebra, the Spectral Theorem [36, Sec. 79], says that
each hermitian operator Z can be decomposed asweighted sumof positive hermitian
projectors Z �

∑K
j�1 z jVj where z1 , ..., zK are the (pairwise distinct) real eigenvalues

of Z. Each Vj is the projector on the eigenspace spanned by the eigenvectors of
z j ; the dimension of this subspace equals the multiplicity of z j as eigenvalue. As
hermitian projectors, they satisfy the equation V2

j � Vj and V∗j � Vj . They are also
mutually orthogonal (VjVk � 0 for integers j, k), and their sum equals the identity,
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∑
1≤ j≤K Vj � IdV . This decomposition of Z is not necessarily compatible with the

preferred basis of V (that diagonalizes its hermitian product).
In analogy to the classical case, we consider as equivalent two hermitian operators

that define the same orthogonal decomposition {Vj} j of V by means of the Spectral
Theorem, ignoring the particular eigenvalues. For us, observable and orthogonal
decomposition (sometimes just ‘decomposition’, for brevity) are then interchangeable
terms. In what follows, we denote by VA both the subspace of V and the orthogonal
projector on it. A decomposition {Vα}α∈A is said to refine {V′β}β∈B if each V′β can be
expressed as sum of subspaces {Vα}α∈Aβ , for certain Aβ ⊆ A. In that case we say also
that {Vα}α∈A divides {V′β}β∈B, and we write {Vα}α∈A → {V′β}β∈B. With this arrows,
direct sums decompositions form a category called Orth(V).

Definition 1.24. A quantummodel of an information structure S is a triple (V, ρ0 , ρ#),
where V is a finite dimensional Hilbert space and ρ : S→ Orth(V) is a functor, and
ρ# : E→ ρ0 is a natural transformation such that:

1. ρ0 is injective on objects;
2. for each X ∈ Ob S, the component ρ#

X : E(X) → ρ0(X) is a bĳection;
3. if X ∧ Y exists, ρ(X ∧ Y) � ρ(X) × ρ(Y).

Aquantummodel gives rise to a quantum information structure as defined in [10].
All the cohomological computations in this thesis concern classical probabilities, but
the general constructions in Chapter 2 only depend on the abstract structure and are
equally valid in the quantum case.
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Chapter 2

Topoi and cohomology

We shall use the information structure and its associated functors to construct a
Grothendieck topos, where cohomology can be defined. Section 2.1 explains the
basic notions related to this approach, abelian categories and derived functors, in
order to give a general definition of cohomology. Section 2.2 introduces the main
definition of the thesis, information cohomology, while the rest of the chapter develops
tools to compute it.

2.1 Preliminaries on homological algebra
Inwhat follows, wedenote sometimes themonomorphisms by� and epimorphisms
by�. Some important definitions of category theory can be found in Appendix A.

Nothing in this section is original, and it can be skipped by any reader already
familiarized with homological algebra.

Abelian categories and ∂-functors where defined by Grothedieck in [35]. For
more details about the history of these concepts see Mac Lane [60, p. 257]. Sections
2.1.1, 2.1.2 and 2.1.3 are based on the translations of Tamme [83]. The case of sheaves
on topological spaces is developed in [61, Ch. II]. Section 2.1.4 is based on [81].

2.1.1 Additive categories

We first examine categories in which suitable pairs of morphisms can be added.
An additive category C is a class of objects A, B, C... (denoted Ob C) together

with
1. A familly of disjoint abelian groups Hom(A, B), one for each pair of objects.

We write α : A→ B for α ∈ Hom(A, B) and call α a morphism of C.
2. To each triple of objects A, B and C, a homomorphism

Hom(B, C) ⊗ Hom(A, B) → Hom(A, C)

of abelian groups, called composition. The image of β ⊗ α under composition
is written βα, and called its composite.

3. To each object A a morphism 1A : A→ A, called the identity of A.
These data are subject to the following four axioms:

• Associativity: If α : A→ B, β : B→ C and γ : C→ D, then

γ(βα) � (γβ)α. (2.1)
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• Identities: If α : A→ B, then

α1A � α � 1Bα. (2.2)

• Zero Object: There is an object 0′ such that Hom(0′, 0′) is the zero group.
• Finite Direct Sums: To each pair of objects A1, A2 there exists an object B and

four morphisms forming a diagram

A1 B A2←→ι1
←→π1 ←→π2

←→ι2 (2.3)

with π1ι1 � 1A1 , π2ι2 � 1A2 and ι1π1 + ι2π2 � 1B .
The diagram (2.3) determines B up to equivalence.

This definition is very similar to the standard one of category, but assuming also
the existence of zero objects and direct sums/products, and the possibility to add
morphisms; composition is required to be bilinear in both arguments. 1

A functor F : C→ C′ between additives categories is called additive if, given any
A, B ∈ Ob C and α, β ∈ Hom(A, B), the equality F(α + β) � F(α) + F(β) holds; there
is an analogous definition for multi-functors. As in the standard case of modules,
Hom(−,−) is an additive bifunctor from C to the category of abelian groups. It is
contravariant in the first component and covariant in the second.

Let C be an additive category and α : A → B a morphism in C. Recall that, by
definition, amorphism µ is amonomorphism (or injective) if the induced application
µ∗ : Hom(C,A) → Hom(C, B), given by ν 7→ µν, is injective for all C ∈ Ob C.
Therefore, µ is a monomorphism if and only if there is no morphism ξ , 0, such that
µξ � 0. We call generalized kernel of α any monomorphism ι : A′ → A such that
any ξ : C→ A satisfying αξ � 0 can be factorized as C→ A′

ι→ A. This morphism is
defined up to equivalence (see Section A.2); hence, between the generalized kernels
(if there is any), there is exactly one subobject of A: we call it kernel of α and denote
it by ker α. A cokernel of α can be defined dually; it is a quotient of B (if it exists). We
call image of α (im α) the kernel of its cokernel; it is a subobject of B. The coimage
of α (coim α)is the cokernel of its kernel; it is a quotient of A. If α admits an image
and a coimage, then there exists a unique morphism ᾱ : coim α → im α such that α
equals the composition A → coim α → im α → B, where the extreme morphisms
are canonic (see [35]).

2.1.2 Abelian categories

An abelian category is an additive category with the following two properties:
(AB1) Each morphism in C has a kernel and a cokernel.
(AB2) For each morphism α in C the canonical morphism ᾱ : coim(α) → im(α) is an

isomorphism.
As a consequence, in an abelian category each bĳectivemorphism is an isomorphism.
The most basic example of an abelian category is Ab, the category of abelian groups;
here all this notions reduce to the classical ones.

1For foundational reasons, it is convenient to add as axiom that for each object A in the category,
the subobjects of A form a set, in opposition to a proper class. The same is supposed for equivalence
classes of n-fold extensions from A to C, see [60, p. 253].
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By definition, a sequence A
α→ B

β
→ C of morphisms in an abelian category is

exact if ker(β) � im(α). A sequence 0→ A
α→ B

β
→ C → 0 is called short exact if α

is a monomorphism, β is an epimorphism and ker(β) � im(α); it can be also denoted
A� B � C.

Under these axioms, each morphism α fits into a commutative diagram

ker α A coim α im α

B

coker α

�→ ←

→
α

←

�

←→'

�→

←�

(2.4)

where the rowand the columnare short exact sequences (thedotsdesignateunnamed
objects). Here, “ker α” stands for an equivalence class of morphisms, and similarly
with the other arrows. Therefore, α admits an standard factorization α � λσ, where σ
is an epimorphismand λ amonomorphism; this factorization is uniquelydetermined
up to equivalences.

A covariant functor F : C → C′ between abelian categories is called left exact
(resp. right exact) if for each exact sequence 0 → A′ → A → A′′ → 0 in C,
the sequence 0 → F(A′) → F(A) → F(A′′) (resp. the sequence F(A′) → F(A) →
F(A′′) → 0) is exact in C′. The notion extend to contravariant functors: for example,
if the result of applying G is 0→ G(A′′) → G(A) → G(A′), then G is called left exact.

Proposition 2.1 (cf. [35]). If the sequence A� B � C in C is exact, then the sequence

0→ Hom(X,A) → Hom(X, B) → Hom(X, C) (2.5)

of abelian groups is exact, for each X ∈ Ob C.

In the context of abelian categories, I is called a injective object if all diagrams of
the form

A B

I

�→

←→

admit an extension
A B

I

�→

←→ → ←

An abelian category C is said to have enough injectives if for each object A ∈ Ob C
there exists a monomorphism from A into an injective object of C.

Proposition 2.2 (cf. [60] or [95]). If C is an abelian category and I ∈ Ob C, the following
statements are equivalent:

1. I is an injective object;
2. the left exact functor Hom(−, I) is exact.
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Analogously, an object P is called projective is each diagram of the form

P

A B

←→

←

�

can be extended to
P

A B

←→←→
←

�

There is a correspondent notion of enough projectives.

2.1.3 Derived functors

Let C be an abelian category and C′ an additive category. A covariant ∂-functor from
C to C′ is a system T � (T i)i≥0 of covariant additive functors T i : C → C′ together
with a connecting morphism ∂ : T i(A′′) → T i+1(A′) defined for each i ≥ 0 and each
short exact sequence 0→ A′→ A→ A′′→ 0, satisfying the following properties:

1. Given a commutative diagram with exact rows

0 A′ A A′′ 0

0 B′ B B′′ 0
←→ ←→

←→

←→

←→

←→

←→

←→ ←→ ←→ ←→

in C, the diagram

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

←→∂

←→ ←→

←→∂

is commutative for all i ≥ 0.
2. Given an exact sequence 0→ A′→ A→ A′′→ 0 in C, the long sequence

0→ T0(A′) → T0(A) → T0(A′′) → T1(A′) → T1(A) → ... (2.6)

is a complex in C′ (the compositions of two arrows gives 0).
In case C′ is abelian too, the ∂-functor T is called exact if for every exact sequence

0 → A′ → A → A′′ → 0 in C, the long sequence (2.6) is exact. The exact ∂-
functors are called cohomological functors. The reason is clear if one compares
the definition above with the classic Eilenberg–Steenrod axioms for cohomology
of topological spaces. The main computational features of both theories are the
presence of connecting morphisms and long exact sequences.

Given two ∂-functors T, T′ : C → C′, a morphism from T to T′ is a system
f � ( f i)i≥0 of functorial morphisms (natural transformations) f i : T i → T′i which
commute naturally with ∂. This means that, for any exact sequence 0→ A′→ A→
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A′′→ 0 in C, the following diagram is commutative:

T i(A′′) T i+1(A′)

T′i(A′′) T′i+1(A′)

←→∂

←→f i(A′′) ←→ f i+1(A′)

←→∂

A ∂-functor T � (T i)i≥0 from C to C′ is called universal if each natural transformation
f 0 : T0 → T′0 has one and only one extension to a morphism f : T → T′.

By the verydefinition, given a left exact and additive covariant functor F : C→ C′,
there is a unique universal ∂-functor from C to C′ extending F; it is called the right
derived functor of F and denoted by (RiF)i≥0.

Theorem 2.3. Let C be an abelian category with enough injectives, and let C′ be an abelian
category. Then for each left exact additive covariant functor F : C → C′ the right derived
functor (RiF)i≥0 exists.

Proof. For the proof, see [83, p. 11]. We just sketch here the main points. As C has
enough injective objects, each object A ∈ Ob C has an injective resolution. Thismeans
that there is a exact sequence

I∗(A) : 0→ A→ I0 → I1 → I2 → ...

where each I i is an injective object of C. This resolution I is functorial.
We can apply the functor F to this injective resolution of A, and define

R0F(A) � ker(F(I0) → F(I1))

RiF(A) � ker(F(I i) → F(I i+1))
im(F(I i−1) − F(I i)) , for i ≥ 1

One shows that Ri is independent of the injective resolution, and functorial on C. It
has also the required properties of ∂-functors. As F is left exact, R0F � F. �

Remark that Hom(A,−) is an additive covariant functor, and left exact in virtue
of 2.5. The corresponding right derived functor is called Extn(A,−). This is the
cohomological functor of our interest.

The theorem above has an analogous version for projective resolutions.

Theorem 2.4. Let C be an abelian category with enough projectives, and let C′ be an abelian
category. Then for each left exact additive contravariant functor F : C→ C′ the right derived
functor (RiF)i≥0 exists.

2.1.4 Sheaves of modules

We have a general setting for homological algebra, given by abelian categories and
cohomological functors. In this section, we develop an important example of abelian
category: sheaves of modules. We shall see later that our information-theoretical
constructions are naturally related to them.

Let C be a category. A presheaf of sets is any contravariant functor F from C
to Sets, the category of sets. A morphism of presheaves φ : F → G is a natural
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transformation of functors. Presheaves of sets and their morphisms form a new
category, denoted by PSh(C). By definition, we say the φ is injective (resp. surjective)
if for every X ∈ Ob C, the map φ(X) : F (X) → G (X) is injective (resp. surjective).

Proposition 2.5. The injective morphisms defined above are exactly the monomorphisms of
PSh(C). The surjective morphisms are exactly the epimorphisms of PSh(C).

It is possible to define a topology on a category, obtaining a site. Presheaves that
are ‘well-behaved’ for this topology are called sheaves. Moreover, every category
admits a trivial topology, such that every presheaf is a sheaf. As we shall use the
trivial topology over our information structure S, the general definitions of site and
sheaf will not play a special role in the theory, and we omit them. For details,
see [32, Ch. 0]. If C is a site, we can consider the full subcategory of PSh(C), whose
objects are the sheaves; this category is denoted by Sh(C).

Abelian presheaves are presheaves that take values in abelian groups. They
form an abelian category (for a proof, see [60, Ch. 9, Prop. 3.1]). A morphism
of abelian presheaves φ : F → G is a natural transformation between F and G
that induces a homomorphism of abelian groups φ(X) : F (X) → G (X) on every
X ∈ Ob C. Given a morphism φ : F → G , the kernel of φ is the abelian presheaf
X 7→ ker{φ : F (X)→G (X)} and its cokernel is X 7→ coker{φ : F (X)→G (X)}.
One has coim � im, because it holds over each X ∈ Ob C. Moreover, a sequence
of presheaves F1 → F2 → F3 is exact if F1(X) → F2(X) → F3(X) is exact
as a sequence of groups over every X ∈ Ob C. Given a site C, the category of
abelian sheaves (denoted by Ab(C)) is the full subcategory of PAb(C) of those abelian
presheaves whose underlying presheaves of sets are sheaves.

If C is a site and O is a sheaf of rings on C, the pair (C,O) is called a ringed
site and O , the structure ring. The pair (Sh(C),O) is called a ringed topos. There
exist appropriate notions of morphisms between ringed sites or ringed topos, cf. [81,
Modules on sites, Secs. 6, 7].

Given a ringed site (C,O), a sheaf of O-modules is given by an abelian sheaf F
together with a map of presheaves of sets O ×F → F , such that for every X ∈ Ob C,
the map O(X) ×F (X) → F (X) defined a structure of O(X)-module on the abelian
groupF (X). Amorphism φ : F → G between sheaves ofO-modules is amorphism
of abelian presheaves φ : F → G such that

O ×F F

O × G G

←→

←→ 1×φ ←→ φ

←→

The set of O-module morphisms from F to G is denoted by HomO (F , G ). Sheaves
of O-modules and its morphisms form the category Mod(O). We quote a important
result in the context of our work.

Proposition 2.6. Let (Sh(C),O) be a ringed topos. The category Mod(O) is abelian.
Moreover, it has enough injective objects.

Proof. For thefirst assertion, see [81,Ch. 18, Lem. 4.1]. For the second, [81,Ch. 19, Lem. 5.1].
�
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This result is due to Grothendieck [35]. Gabriel proves in [31] that there is a
minimal injective object containing a given object, called its injective envelope.

Finally, given a (trivial) ringed site (C,O) and E in PSh(C), it is possible to define
a presheaf of O-modules, denoted by O[E], that associates to each X ∈ Ob C the free
O(X)-module on generators E(X). There is an adjunction

MorMod(O)(O[E],F ) � MorPSh(C)(E,�F ) (2.7)

where � denotes the forgetful functor.

2.2 Information cohomology

Let S be the poset of variables of an information structure (S, E ). We view it as a site
with the trivial topology (called topologie grossière or chaotique in [4, II.1.1.4]), such that
every presheaf is a sheaf. For each X ∈ Ob S, setSX :� {Y ∈ Ob S | X → Y}, with the
monoid structure given by the product of observables in S: (Z,Y) 7→ ZY :� Z ∧ Y.
Let AX :� R[SX] be the corresponding monoid algebra. The contravariant functor
X 7→ AX is a sheaf of rings; we denote it by A . The pair (S,A ) is a ringed site.

For a fixed object G of Mod(A ), the covariant functor Hom(G ,−) is always addi-
tive and left exact. As Mod(A ) has enough injective objects, it is possible to define
the right derived functors associated to any left exact additive covariant functor. In
the case of Hom(A,−), the associated right derived functors are called Extn(G ,−),
for n ≥ 0.

Let RS(X) be the AX-module defined by the trivial action of AX on the abelian
group (R,+) (for s ∈ SX and r ∈ R, take s · r � r). The presheaf that associates to
each X ∈ Ob S the module RS(X), and to each arrow the identity map is denoted RS.

Definition 2.7. The information cohomology associated to the poset of variables S,
with coefficients in the A -module F , is

H•(S,F ) :� Ext•(RS ,F ). (2.8)

The definition of information cohomology is formally analogous to that of group
cohomology . In this case, one begins with a multiplicative group G and constructs
the free abelian group Z[G], whose elements are finite sums

∑
mg g, with g ∈ G and

mg ∈ Z. The product of G induces a product between two such elements, and makes
Z[G] a ring, called the integral group ring of G. The category of Z[G]-modules
is abelian and has enough injective objects. The cohomology groups of G with
coefficients in a Z[G]-module A are defined by

Hn(G,A) � Extn(Z,A), (2.9)

where Z is the trivial module.
Finally, we make some observations concerning the computation of cohomology.

Let C be an abelian category with enough injectives, like Mod(A ), and suppose that
we are interested in computing the groups {Extn(A, B)}n≥0 for certain fixed objects
A and B. In addition, we assume that A has a projective resolution 0 ← A ← P0 ←
P1 ← .... Then, Theorem 4.6.10 in [74] implies that, for all n ≥ 0,

(Rn HomC(A,−))(B) ' (Rn HomC(−, B))(A). (2.10)
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We denote (Rn HomC(−, B))(A) by Extn(A, B). They are given by the formulas:

Ext0(A, B) � ker(Hom(P0 , B) → Hom(P1 , B)), (2.11)

Exti(A, B) � ker(Hom(Pi , B) → Hom(Pi+1 , B))
im(Hom(Pi−1 , B) → Hom(Pi , B))

, for i ≥ 1. (2.12)

2.3 Relative homological algebra

2.3.1 General results

In this subsection, we summarize some results from [60, Ch. IX]. The purpose is
to find the analogous of a free resolution of modules, but in the general context of
abelian categories. Capital Latin letters A, B, C... denote objects and Greek letters
α, β... morphisms.

A relative abelian category is a pair of abelian categories A and M and a convari-
ant functor � : A→M which is additive, exact and faithful (we write �(X) � X�, for
objects and morphisms). Additivity implies that (A ⊕ B)� � A� ⊕ B�; by exactness,
� carries exact sequences into exact sequences; as � is faithful, α� � 0 implies α � 0,
therefore A� � 0 entail A � 0.

Example 2.8. The simple example to have in mind are R-modules and S-modules,
when S is a subring of R with the sameunity (write ι : S→ R for the injection). In this
case, every R-module A can be seen as an S-module ιA by restriction of scalars: denote
by Ā the underlying abelian group and by Λ : R → End(Ā) the action of R over Ā,
then define the action Λ′ : S → End(Ā) by Λ′ � Λ ◦ ι. Every R-module morphism
α : A → B is also a S-module morphism ια : ιA → ιB. Therefore, �A :� ιA and
�α :� ια defines a functor from the category A of left R-modules to the category M
of left S-modules that forgets part of the structure. This functor is exact, additive and
faithful.

A short exact sequence χ‖σ in A is relatively split (�-split) if χ�‖σ� splits in M,
this means that σ� has a right inverse k or, equivalently, χ� has a left inverse t. We
obtain a direct sum diagram in M,

A B C.�→χ�
←→t ←

�
σ�

←→

k
(2.13)

This class of short exact sequences is also called �-allowable, or simply allowable
(see [60, Ch. IX, Sec. 4]). A monomorphism χ is called allowable if χ‖σ is �-split for
some σ; this is the case if and only if χ‖(coker χ) is �-split. Dually, an epimorphism
is called allowable if (ker σ)‖σ is �-split. Therefore, the class of allowable short
exact sequences is determined by the allowable monomorphisms or the allowable
epimorphisms.

The following conditions on a morphism α are equivalent:
1. im α is an allowable monomorphism and coim α is an allowable epimorphism;
2. ker α is an allowablemonomorphism and coker α is an allowable epimorphism;

A morphism is called allowable when it satisfies any of these conditions (see [60,
p. 264]).
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A relative projective object P is any object of A such that, for every allowable
epimorphism σ : B → C, each morphism ε : P → C of A can be factored through σ
as ε � σε′ for some ε′ : P → A.

In order to construct enough relative projectives, we consider the following def-
inition. A resolvent pair is a relative abelian category � : A → M together with
a covariant functor F : M → A left adjoint to �. This means that there exist a
isomorphism ϕ,

ϕ : HomA(FM,A) ∼−→ HomM(M,�A), (2.14)

natural in both arguments. We can think of � as a forgetful functor, and F as the
corresponding “free” functor.

Proposition 2.9. Let � : A → M be a relative abelian category. The following conditions
are equivalent:

1. there exists a covariant functor F : M→ A left adjoint to �;
2. there exist a covariant functor F : M→ A, and a natural transformation e : 1M → �F

(where 1M is the identity functor), such that every u : M → A� inM has a factorization
u � α�eM , with α : F(M) → A unique.

Proof. Suppose (1); taking A � FM in (2.14), define eM as ϕ(1FM). Now, for arbitrary
A ∈ Ob A, take α :� ϕ−1(u); the naturality of ϕ implies u � α�eM . The implication
(2)⇒ (1) follows immediately taking ϕ−1(u) :� α. More details can be found in [60,
p. 266]. �

Example 2.10 (continuation of 2.8). Take F(M) � R ⊗S M and eM � 1 ⊗ m ∈ F(M).
Given a map of S-modules u : M → A� , define α : FM → A by α(1 ⊗ m) � u(m).

The followingproposition exploits theproperties of the allowablemorphisms that
we are studying (�-split), and give us “free” objects, as suggested by the notation
above.

A complex ε : X → A over A (in A) is a sequence of A-objects and A-morphisms
...Xn → Xn−1 → ... → X1 → X0

ε−→ A → 0, such that the composite of any two
succesive morphisms is zero. This complex is called:

1. a resolution of C, if the sequence is exact;
2. relatively free if each Xn has the form F(Mn) for certain Mn in M (we write en

instead of eMn : Mn → Xn);
3. allowable if all its morphisms are allowable.
Each object C of A has a canonical relatively free resolution. Writing F̃C for F�C,

and F̃n for its n-fold iteration, construct the objects

Bn(C) � F̃n+1C, n ∈ N. (2.15)

Define M-morphisms s• between the corresponding objects

�C �B0(C) �B1(C) �B2(C) . . .←→s−1 ←→s0 ←→s1 ←→s2 (2.16)

as s−1 :� e(�C) and sn :� e(�Bn(C)) (here e is the natural transformation in Proposi-
tion 2.9).
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Proposition 2.11 ( [60, p. 268]). There are unique A-morphisms

ε : B0(C) → C, ∂n+1 : Bn+1(C) → Bn(C) for n ∈ N,

whichmake B(C) :� {Bn(C)}n a relatively free allowable resolution of C with s as contracting
homotopy in M. This resolution, with its contracting homotopy, is a covariant functor of C.

Proof. We simply quote here the construction of ε and ∂n . They form the following
diagram (solid arrows belong to A, and dashed arrows belong to M):

0 C B0(C) B1(C) B2(C) . . .←→ ←→s−1

←→ε ←→s0

←→∂1 ←→s1

←→∂2 ←→s2

←→∂ (2.17)

By Proposition 2.9, 1�C factors through a unique ε : B0(C) → C; the formula 1�C �

ε�eC shows that ε is allowable (note that ε is an epimorphism). Boundary operators
are defined by recursion so that s will be a contracting homotopy. Given ε, the
morphism 1�B0 − s−1ε� factors uniquely as ∂1�s0, for some ∂1 : B1(C) → B0(C).
Similarly, 1�Bn − sn−1∂n� : �Bn(C) → �Bn(C) determines ∂n+1 given ∂n , as the unique
A-morphism such that ∂n+1�sn � 1�Bn − sn−1∂n�.

�Bn+1 �Bn

�Bn

←→∂1�

← →sn ← →
1�Bn

(2.18)

�

The resolution B(C) is called the (unnormalized) bar resolution. A relative Ext
bifunctor may be defined by

Extn
�(C,A) :� Hn(HomA(B(C),A)). (2.19)

A “relative” version of the comparison theorem (see [60, Ch. IX, Th. 6.2]) shows that
one can use any other allowable and relatively projective resolution ε : X → C to
compute Extn

� as
Extn
�(C,A) � Hn(HomA(X,A)). (2.20)

Note that HomA(X,A) stands for all the A-morphisms, not just the allowable ones.
It is clear that Ext0

�(C,A) � Ext0(C,A), but in general the groups Extn
�(C,A) depend

on �.

2.3.2 Example: Presheaves of modules

We develop now the particular case relevant to our theory. Let S be a category, and
R ,T : Sop → Rings presheaves, such that TX is a subring of RX with the same
unity, for every X ∈ Ob T. Take A � Mod(R), the category of presheaves of R-
modules, and M � Mod(T ), the category of presheaves of T -modules. A relative
abelian category is obtained when � : A → M is the forgetful functor over each X,
as defined in Example 2.8. The functor F : M → A sends a presheaf P to the new
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presheaf X 7→ RX ⊗TX PX ,2 and each morphism of T -presheaves (abbreviated to
T -morphism) f : M → N to the R-morphism defined by

∀X ∈ Ob S, ∀m ∈ M(X), F f (X)(1 ⊗ m) � 1 ⊗ f (m), for X ∈ S. (2.21)

The natural transformation e mentioned in Proposition 2.9 corresponds to a collection
of T -morphisms eP : P → �F(P), one for each presheaf P of T -modules; given
X in S, we define eP (X)(m) � 1 ⊗ m for each m ∈ M(X). 3

Fix now a presheaf C in Mod(R). We denote by X a generic element in Ob S.
Then, B0C (X) :� F�C (X) � RX ⊗TX (�C (X)); this RX-module is formed by finite
RX-linear combinations of tensors 1 ⊗ c, with c ∈ C . Generally, an element of
BnC (X) � RX ⊗ �Bn−1C (X), for n ≥ 1, is a finite RX-linear combination of tensors
1 ⊗ r1 ⊗ r2 ⊗ ... ⊗ rn ⊗ c. The ring RX acts on BnC (X) by multiplication on the first
factor of the tensor product; to highlight this fact, people usuallywrite r[r1 |r2 |...|rn |c]
instead of r ⊗ r1 ⊗ r2 ⊗ ... ⊗ rn ⊗ c. This notation explains the name “bar resolution”
adopted above. The definition of e implies that

sX
−1 : �C (X) → �B0C (X), c 7→ 1 ⊗ c � [c], (2.22)

and

sX
n : �BnC (X) → �Bn+1C (X), r[r1 |r2 |...|rn |c] 7→ [r |r1 |r2 |...|rn |c] for n ∈ N.

(2.23)
These equalities determine s•, since these functions are TX-linear.

Now ε is the unique R-morphism such that 1�C � ε�eC ; this is clearly the case if
εX([c]) � c. Similarly, ∂1 is the unique R-morphism from B1C to B0C that satisfies

∂1�e0 ≡ ∂1�s0 � 1 − sX
−1ε� (2.24)

Since B1C (X) is generated as aRX-module by the elements [r |c], and sX
0 (r[c]) � [r |c],

the equation (2.24) defines ∂1 completely. Just remark that ε(r[c]) � rε([c]) � rε(1 ⊗
c) � rc and s1(rc) � [rc]. We conclude that

∂1([r |c]) � r[c] − [rc]. (2.25)

It can be proved by recursion that (cf. [60, p. 281])

∂[r1 |...|rn |c] � r1[r2 |...|rn |c] +
n−1∑
k�1

(−1)k[r1 |...|rk rk+1 |...|rn |c] + (−1)n[r1 |...|rn−1 |rn c].

(2.26)
In virtue of Proposition 2.11, we obtain in this way a free allowable resolution of C .

2This is a left R-module with action defined by r(r′ ⊗ p) � (rr′) ⊗ g. For iterated tensor products,
this definition is not canonical; for example, when consideringRX ⊗RX ⊗PX , the element (sr)⊗ r′⊗ g
does not equal r ⊗ (sr′) ⊗ g (for s ∈ T ), unless T is in the center of R. As in this work we only use
commutative rings and algebras, these differences do not pose any problem.

3Of course, one has to prove that e is in fact a natural transformation and satisfies the properties
required by Proposition 2.9. This proof is rather trivial but complicated to write, and we omit it.
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2.4 Nonhomogeneous bar resolution
In this section, we introduce a projective resolution of the sheaf of A -modules RS: a
long right exact sequence

0 RS B0 B1 B2 ...←→ ←→ε ←→∂1 ←→∂2 ←→∂3 (2.27)

that will allow us to compute the information cohomology.
Remember thatAX is the algebra overR generated by themonoidSX . LetBn(X)

be the free AX module generated by the symbols [X1 |...|Xn], where {X1 , ...,Xn} ⊂
SX . Remark that B0(X) is the free module on one generator [ ].

We introduce now AX-module morphisms εX : B0(X) → RS(X), from B0(X)
to the trivial AX-module RS(X), given by the equation ε([ ]) � 1, and boundary
morphisms ∂ : Bn(X) → Bn−1(X), given by

∂([X1 |...|Xn]) � X1[X2 |...|Xn] +
n−1∑
k�1

(−1)k[X1 |...|XkXk+1 |...|Xn] + (−1)n[X1 |...|Xn−1].

(2.28)
These morphisms are natural in X.

Proposition 2.12. The complex (2.27) is a resolution of the sheaf RS.

Proof. The construction corresponds to the relatively projective bar resolution [60,
Ch. IX], more especifically to the example developed at the end of Appendix 2.3,
settingR andT there equal toS andRS, respectively. The resolutionB• introduced
above is B•C , for C � RS. The notation can be simplified, because C (X) is generated
by 1 as anAX-module (and also as a vector space overR). Therefore, B0C is generated
over AX by the symbol [1], written simply as [ ]. In general, BnC (X) is generated
over AX by the symbols [X1 |...|Xn |1], or simply [X1 |...|Xn] if we omit the 1. �

Thus far we have a resolution with relatively free objects, that in general need not
be projective. However, the special properties of S allow us to improve the result.

Proposition 2.13. For each n ≥ 0, the sheaf Bn is a projective object in Mod(A ).

Proof. Let T be the presheaf of sets defined by T (X) � { [X1 |...|Xn] | Xi ∈ SX }, for
X ∈ Ob S. We have Bn � A [T ].

Consider an epimorphism σ : M � N and a morphism ε : A [T ] → N ,
both in Mod(A ). By the adjunction HomMod(A )(A [T ], G ) � HomPSh(S)(F , G ),
ε determines a unique morphism ε̃ : T → N in PSh(S). To show that Bn is
projective, it suffices to show that there exists ε̃′ : F → M such that ε̃ � σε̃′, since
by the adjunction this determines a morphism of A -modules.

To define ε̃′, one has to determine the image of every symbol [X1 |...|Xn], each
time it appears in a set T (X). Remark that

[X1 |...|Xn] ∈ T (X) ⇔ (∀i)(X → Xi) ⇔ X → X1 · · ·Xn � Πn
i�1Xi

The last equivalence is true due to the definition of S. Therefore, the symbol
[X1 |...|Xn] just appears in the sets T (X) where X → Πn

i�1Xi ; the full subcate-
gory of S determined by these objects X has a terminal object, Πn

i�1Xi itself. To



Topoi and cohomology 73

solve the lifting problem, it is enough to pick m ∈ σ−1
Πn

i�1Xi
(ε̃([X1 |...|Xn])), and define

ε̃′
Πn

i�1Xi
([X1 |...|Xn]) :� m. This choice gives, by funtoriality, a well defined value

ε̃X([X1 |...|Xn]) � M (π)(m) over each X such that π : X → Πn
i�1Xi in S. �

The existence of this projective resolution just depends on the definition of an
abstract information structure (Definition 1.6). It appears in the computation of
classical and quantum information cohomology: the difference between this cases
lies in the coefficients.

2.5 Description of cocycles

We have built a projective resolution (2.27) of RS in Mod(A ). For every A -module
F , the information cohomology H•(S,F ) can be computed as Extn(RS ,F ), defined
in formulas (2.11) and (2.12) i.e. we deal with the cohomology of the differential
complex {Cn(S,F ), δ}, where

Cn(S,F ) :� HomA (Bn(RS),F )}n≥0

and δ is given by (2.29) bellow. Amorphism f in Cn(S,F ) is called n-cochain. More
explicitly, an n-cochain f consists of a collectionofmorphisms fX ∈ HomAX (Bn(X),FX)
that satisfies the following conditions:

1. f is a natural transformation (a functor of presheaves): given π : X → Y, the
diagram

Bn(Y) FY

Bn(X) FX

←
↩→

←→fY

←→ F (π)

←→fX

commutes. We refer to this property as (joint) locality, for reasons that become
evident in the following chapters.

2. f is compatible with the action of A : for every X ∈ Ob S, the diagram

AX ×Bn(X) Bn(X)

AX ×FX FX

←→

←→ 1× fX ←→ fX

← →

commutes. Thismeans that fX is equivariant; in particular, fX(Y[Z]) � Y. fX[Z]
whenever Y ∈ SX .

Since Bn(X) is a free module, fX is determined by the values on the generators
[X1 |...|Xn]. Just to simplify notation, wewrite fX[X1 |...|Xn] instead of fX([X1 |...|Xn]).

The coboundary of f ∈ Cn(S,F ) is the (n + 1)-cochain δ f � f ∂ : Bn+1 → F .
More explicitly,

δ f [X1 |...|Xn+1] � X1. f [X2 |...|Xn+1] +
n∑

k�1

(−1)k f [X1 |...|XkXk+1 |...|Xn]

+ (−1)n+1 f [X1 |...|Xn] (2.29)
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As customary, a cochain f ∈ Cn(S,F ) is called an n-cocycle when δ f � 0; the
submodule of all n-cocycles is denoted by Zn(S,F ). The image under δ of Cn−1

is another submodule of Cn(S,F ), denoted δCn−1(S,F ); its elements are called n-
coboundaries. By definition, δC−1(S,F ) � 〈0〉, the trivial module. Since δ2 � 0,
δCn−1 is a submodule of Zn . With this notation, Hn(S,F ) � Zn(S,F )/δCn−1(S,F ),
for every n ≥ 0.



Part II

Information cohomology of
discrete random variables





Chapter 3

Probabilistic information
cohomology

In this chapter, all information structures are supposed to be finite; they are denoted
(S, E). We compute the information cohomologywhen the coefficients are functionals
of probability laws; Shannon entropy and Tsallis α-entropies appear as 1-cocycles.

3.1 Functional module

Let (S, E) be an information structure, and Q an adapted probability functor. Infor-
mation theory uses some functions defined on each set QX to measure the amount
of information associated to the variable X. For example, given a variable X and a
probability P ∈ QX , the Gibbs-Shannon entropy

S1[X](P) :� −
∑

x∈EX

P(x) log P(x) (3.1)

was proposed by Shannon [78] as a measure of uncertainty. Other example is given
by the structural α-entropy, defined as

Sα[X](P) �
1

1 − α

( ∑
x∈EX

P(x)α − 1

)
, (3.2)

for α > 0, α , 1.
In view of these considerations, let us introduce, for each X ∈ Ob S, the real

vector space F (QX) of measurable functions on QX ; we call it functional space. For
each arrow π : X → Y in S, there is a morphism π∗ : F (QY) → F (QX) defined by

π∗ f (PX) � f (π∗PX).

Therefore, F (Q) is a contravariant functor from S to the category of real vector
spaces.

Whenever Q is adapted to S, the functional space F (QX) admits an action of
the monoid SX (parameterized by α > 0): for Y ∈ SX , and f ∈ F (QX), the new
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function Y. f is given by

(Y. f )(PX) �
∑
y∈EY

Y∗PX(y),0

(Y∗PX(y))α f (PX |Y�y). (3.3)

By Proposition 3.1, there is a morphism of monoids SX → End(F (QX)), given
by Equation (3.3), that extends by linearity to a morphism of rings Λα(X) : AX →
End(F (QX)). This means that, for each α > 0, F (QX) has the structure of a AX-
module, denoted Fα(QX). 1

Proposition 3.1. Given any X ∈ Ob S, observables Y and Z in SX , and f ∈ F (QX):

(ZY). f � Z.(Y. f ).

Proof. The universal property of products gives the commutative diagram:

X

Y YZ Z

←

→

ρY

←

→
ρZ←→ 〈ρY ,ρZ〉

←→

πY

← →πZ

For P ∈ QX ,

Z.(Y. f )(P) �
∑
z∈EZ

Z∗P(z),0

P(Z � z)α
∑
y∈EY

Y∗P |Z�z(y),0

(P |Z�z(Y � y))α f ((P |Z�z)|Y�y)

�

∑
z∈EZ

Z∗P(z),0

∑
y∈EY

Y∗P |Z�z(y),0

P({Y � y} ∩ {Z � z})α f ((P |Z�z)|Y�y)

The equality P(Z � z)P |Z�z(Y � y) � P({Y � y} ∩ {Z � z}) simply corresponds to
the definition of conditional probabilities. The pairs (y , z) that appear in the sum
are such that P({Y � y} ∩ {Z � z}) , 0, so P(Y � y) and P(Z � z) are different from
zero; in this case, the equality

(P |Z�z)|Y�y(B) �
P |Z�z(B ∩ {Y � y})

P |Z�z(Y � y) �
P(B ∩ {Y � y} ∩ {Z � z})

P({Y � y} ∩ {Z � z}) � P |Z�z ,X�x(B)

holds for every B ⊂ X. By (6), the nonempty sets {Y � y} ∩ {Z � z} � ρY
−1
∗ (y) ∩

ρZ
−1
∗ (z) ⊂ EX are the preimage by 〈ρY , ρZ〉∗ of a unique element w(y , z) ∈ E(YZ);

moreover, for every element w ∈ E(YZ)we find such set. Remark that

P({Y � y} ∩ {Z � z}) � P(ρY
−1
∗ (y) ∩ ρZ

−1
∗ (z)) � P(〈ρY , ρZ〉−1

∗ w(y , z)).

Therefore,

Z.(Y. f )(P) �
∑

w(y ,z)∈EYZ
YZ∗P(w),0

P({Y � x} ∩ {Z � z})α f (P |Z�z ,X�x) � (ZY). f (P).

�

1AsAX is aR-algebra, it comes with an inclusion fX : R→ AX , r 7→ r1S. The compositeΛα(X)◦ fX
gives an action of R over F (QX), that coincides with the usual multiplication of functions by scalars.
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The next proposition shows that this action is compatible with the morphisms
between functional modules. Hence, the sheaf Fα(Q) belongs to Mod(A ), and can
be used as coefficients in information cohomology.

Proposition 3.2. Given πYX : X → Y and πZY : Y → Z, the action of Z makes the
following diagram commute

F (QY) F (QY)

F (QX) F (QX)
←→ π∗YX

←→Z

←→ π∗YX

←→Z

Proof. Wemust prove that, for all fY ∈ F (QY), P ∈ QX , the equality (Z. fY)(πYX
∗ P) �

Z.( fY ◦ πYX
∗ )(P). On one hand,

(Z. fY)(πYX
∗ P) �

∑
z∈EZ

πZY
∗ πYX

∗ P(z),0

πZY
∗ πYX

∗ P(z) fY((πYX
∗ P)|Z�z), (3.4)

and on the other,

Z.( fY ◦ πYX
∗ )(P) �

∑
z∈EZ

πZX
∗ P(z),0

πZX
∗ P(z) fY(πYX

∗ (P |Z�z)). (3.5)

The two expressions coincide since marginalizations are functorial, πZY
∗ πYX

∗ � πZX
∗ ,

and commute with conditioning (cf. Section 1.3). �

3.2 Functoriality

In this and the following sections we study information cohomology with coeffients
inFα(Q). This cohomology and its generalizations in Part IV are called probabilistic
information cohomology.

Let φ : (S, E) → (S′, E′) be a morphism between finite information structures,
and let Q be a probability functor on S and Q′, a probability functor on S′. Given a
X ∈ Ob S and a law P ∈ QX , define a law mX(P) on E′

φ(X) by the equation

∀x′ ∈ Eφ(X) , (mX(P))(x′) �
∑

x∈φ#
X
−1(x′)

P(x). (3.6)

We suppose that, for all X ∈ Ob S and all P ∈ QX , the law mX(P) belongs to Q′
φ(X).

Then m• : Q→ Q′◦φ is a natural transformation. In fact, for every arrow π : X → Y
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and y′ ∈ Eφ(Y),

(Q′(π)(mX(P)))(y′) �
∑

x′∈E′(φ(π))−1(y′)
(mX(P))(x′)

�

∑
x′∈E′(φ(π))−1(y′)

∑
x∈φ#

X
−1(x′)

P(x)

�

∑
x∈(E(φ(π))◦φ#

X)−1(y′)

P(x)

�

∑
x∈(φ#

Y◦E(π))−1(y′)

P(x)

�

∑
y∈φ#

Y
−1(y′)

∑
x∈E(π)−1(y)

P(x)

� mY(Q(π)(P))

The forth equality comes from the naturality of φ#
•, as stated in Definition 1.7.

We construct now a functor between cohomology groups.

Proposition 3.3. Let φ : (S, E) → (S′, E′) be a morphism of information structures; let Q
(resp. Q′) be an adapted probability functor on S (resp. S′). Suppose that

1. for all X ∈ Ob S, the map φ#
X is a bĳection, and

2. for all X ∈ Ob S and all P ∈ QX , the law mX(P) belongs to Q′
φ(X).

Then, there exist a cochain map

φ∗• : (C•(Fα(Q′), δ) → (C•(Fα(Q), δ), (3.7)

given by the formula

(φ∗n f )Y[X1 |...|Xn](P) :� fφ(Y)[φ(X1)|...|φ(Xn)](mY(P)). (3.8)

The chain map induces a morphism of graded vector spaces in cohomology

φ∗• : H•(S′,Fα(Q′)) → H•(S,Fα(Q)). (3.9)

Proof. First, we prove that φ∗ f is jointly local. For f is jointly local,

fφ(Y)[φ(X1)|...|φ(Xn)](mY(P))

only depends on

(φ(X1) · · · φ(Xn))∗mY(P) � (φ(X1 · · ·Xn))∗mY(P).

Let π : Y → X1 · · ·Xn be the corresponding refinement. Since m• is a natural
transformation, mX1···Xn ◦Q(π) � Q′(φ(π)) ◦ mY ; this means that

(φ(X1 · · ·Xn))∗mY(P) � mX1···Xn (Q(π)(P)) � mX1···Xn ((X1 · · ·Xn)∗P). (3.10)

We conclude that φ∗ f depends only on (X1 · · ·Xn)∗P and its therefore a cocycle.
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We show now that φ∗ commutes with δ. For simplicity, we write the formulas for
n � 2; the argument works in general. Note that

(φ∗(δ f ))Y[X1 |X2] � δ fφ(Y)[φ(X1)|φ(X2)] (3.11)
� φ(X1). fφ(Y)[φ(X2)] − fφ(Y)[φ(X1)φ(X2)] + fφ(Y)[φ(X1)]. (3.12)

Bydefinition, fφ(Y)[φ(X1)] � φ∗ fY[X1] andsimilarly fφ(Y)[φ(X1)φ(X2)] � φ∗ fY[X1X2],
since φ(X1)φ(X2) � φ(X1X2). The remaining term (φ(X1). fφ(Y))[φ(X2)](mY(P))
equals ∑

x′1∈E′(φ(X1))
{(φ(π1)∗ ◦ mY)(P)}(x′1) fφ(Y)[φ(X2)]((mY(P))|φ(X1)�x′1

) (3.13)

where π1 : Y → X1. We write φ(π1)∗ instead of Q′(φ(π1)) and π1∗ instead of Q(π1).
Set x1 � φ#

X1

−1(x′1). The naturality of m• implies that

{(φ(π1)∗ ◦ mY)(P)}(x′1) � {(mX1 ◦ π∗)(P)}(x′1) �
∑

x∈φ#
X1
−1(x′1)

π∗P(x) � π∗P(x1). (3.14)

Finally, for every y′ ∈ φ(Y),

(mY(P))|φ(X1)�x′1
(y′) �

mY(P)({y′} ∩ {φ(X1) � x′1})
mY(P)(φ(X1) � x′1)

�

∑
z∈φ#

Y
−1({y′})∩φ#

Y
−1({φ(X1)�x′1})

P(z)∑
z∈φ#

Y
−1({φ(X1)�x′1})

P(z)

�

∑
z∈φ#

Y
−1({y′}) P({z} ∩ {X1 � x1})

P(X � x1)
� mY(P |X�x1).

The first equality comes from the definition of conditioning and the second from that
of mY . The third is a consequence of

φ#
Y
−1({φ(X1) � x′1}) � { z ∈ Y | φ(π) ◦ φ#

Y(z) � x′1 }
� { z ∈ Y | φ#

X1
◦ π(z) � x′1 } � { z ∈ Y | π(z) � x1 }.

that depends on φ#
X1

being a bĳection. Therefore,

fφ(Y)[φ(X2)]((mY(P))|φ(X1)�x′1
) � fφ(Y)[φ(X2)](mY(P |X�x1)) � (φ∗ f )Y[X2](P |X1�x1),

hence (φ(X1). fφ(Y))[φ(X2)](mY(P)) � (X1.φ∗ fY)(P). In consequence, δ commutes
with φ∗, as we wanted to prove. �

Corollary 3.4. If φ : S→ S′ is an isomorphism of information structures, and Q′(φ(X)) �
mX(QX) for every X ∈ Ob S, then φ∗ : H•(S′,Fα(Q′)) → H•(S,Fα(Q)) is an isomor-
phism too.
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Proof. Let ψ : S′→ S be the inverse of φ. It is clear from the definitions that φ0 and
ψ0. Moreover, for every X ∈ Ob S, we have ψ#

φ(X) ◦ φ
#
X � idX , and similarly for φ(X);

this implies that φ#
X and ψ#

φ(X) are bĳections. Proposition 3.3 ensures the existence of
φ∗ : H•(S′,Fα(Q′)) → H•(S,Fα(Q)) and ψ∗ : H•(S,Fα(Q)) → H•(S′,Fα(Q′)); and
ψ∗ ◦ φ∗ � id, φ∗ ◦ ψ∗ � id by formula (3.8). �

We also recover from Proposition 3.3 two functorial properties for concrete infor-
mation structures stated in [10].
Proposition 3.5. Consider concrete information structures S, S′ associated to a measurable
spaces (Ω,B) and (Ω′,B′), respectively. Let Q (resp. Q′) be a probability functor defined
on S (resp. S′). Let σ : (Ω,B) → (Ω′,B′) be a surjective measurable function, such that

1. for all X ∈ Ob S, there exists φ(X) ∈ Ob S′ such that σ descends to a bĳection
σX : Ω/X ∼→ Ω′/φ(X);2

2. for every X ∈ Ob S and P ∈ QX , the marginalization σX∗P is in Q′
φ(X);

Then, there exists a natural morphism of graded vector spaces

σ∗ : H•(S′,Fα(Q′)) → H•(S,Fα(Q)), (3.15)

defined at the level of cochains by

(σ∗ f )Y[X1 |...|Xn](P) � fφ(Y)[φ(X1)|...|φ(Xn)](φ∗P), (3.16)

where X j � X′j ◦ φ, for each index i.

Proof. The correspondence X 7→ φ(X) defines a functor from φ0 : S→ S′; in fact, if
π : X → Y, there is a corresponding surjection π∗ : Ω/X → Ω/Y and σY ◦ π∗ ◦ σ−1

X :
Ω′/φ(X) → Ω′/φ(Y) is also a surjection, that gives a morphism φ(X) → φ(Y) in S′.
We take as φ#

X : X → φ(X) the bĳection of partitions induced by σX (recall that, for
concrete structures, the functor of values is the identity). The condition (2) implies
that m• : Q→ Q′◦φ is a natural transformation. Proposition 3.3 entails the existence
of φ∗ �: σ∗. �

Proposition 3.6. Consider concrete information structures S, S′ associated to a measurable
spaces (Ω,B) and (Ω′,B′), respectively. Let Q (resp. Q′) be a probability functor defined
on S (resp. S′). Let η : (Ω,B) → (Ω′,B′) be a measurable function, such that

1. for all X′ ∈ Ob S′, there exists φ(X′) ∈ Ob S such that η descends to a bĳection
ηX : Ω/φ(X′) → Ω/X′;

2. for all X′ ∈ Ob S′ and P′ ∈ Q′X′, there exists P ∈ Qφ(X′) with P′ � ηX∗P.
Then, there exists a natural morphism of graded vector spaces

η∗ : Hm(S,Fα(Q)) → Hm(S′,Fα(Q′)), (3.17)

defined at the level of cochains by

(σ∗ f )Y[X′1 |...|X′n](P′) � fφ(Y)[φ(X′1)|...|φ(X′n)](P), (3.18)

where P′ � ηY∗P.
Proof. The correspondence X′ 7→ φ(X′) defines a functor φ0 : S′ → S (see the proof
of Proposition 3.5). We take as φ#

X : X′ → φ(X′) the bĳection induced by η−1
X .

Assumption (2) implies that m• : Q′→ Q ◦φ is a natural transformation and we can
use Proposition 3.3 to conclude. �

2Every partition X defines an equivalence relation and Ω/X denotes the corresponding quotient.
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3.3 Determination of H0

Each 0-cochain f [ ] ≡ f corresponds to a collection of functions fX(PX) ∈ Fα(QX),
for each X ∈ Ob S, that satisfy fY(Y∗PX) � fX(PX) for any arrow X → Y in S. As we
assume that 1 ∈ Ob S, this means that f is constant. Given an arrow X → Y, and a
0-cochain f such that fX(P) � K,

(δ f )X[Y](P) � Y. fX(P) − fX(P) �
∑
y∈EY

P(Y � y)α f (P |Y�y) − f (P)

� K ©«
∑
y∈EY

P(Y � y)α − 1ª®¬ � 0.

Thismeans that Z0(S,F1(Q)) � C0(S,F1(Q)) � R and Z0(S,Fα(Q)) � 〈0〉when α ,
1 (as longas someQY contains anonatomicprobability). Equivalently, H0(S,F1(Q)) �
R, and H0(S,Fα(Q)) � 〈0〉 when α , 1.

3.4 Local structure of 1-cocycles

Now we turn to C1(S,Fα(Q)). The 1-cochains are families { fX[Y] | X ∈ Ob S}
such that for all Z → X → Y, the equality fX[Y](X∗PZ) � fZ[Y](PZ) holds. This
means that it is sufficient to know fY[Y](Y∗P) to recover fX[Y](P), for any X → Y;
in this sense, we usually omit the subindex and just write f [Y]. The computation
above implies that δC0(S,F1(Q)) � 〈0〉. On the other hand, δC0(S,Fα(Q)) � R
when α , 1, and 1-coboundaries are multiples of the section of Fα(Q) given by
X 7→ Sα[X]; we write δC0(S,Fα(Q)) � R · Sα .

By equation (2.29) and commutativity of the product, every 1-cycle (δ f � 0) must
satisfy the following symmetric relation:

f [XY] � f [Y] + Y. f [X] � f [X] + X. f [Y]. (3.19)

Proposition 3.7. Let f be a 1-cocycle. Then
1. f [1] ≡ 0
2. For every X ∈ Ob S and x ∈ EX , the equality f [X](δx) � 0 holds.

Proof. Statement (1) is a particular case of (2); we prove the later. From f [XX] �
f [X] + X. f [X], we conclude that X. f [X] � ∑

x∈EX |P(x),0 P(x)α f [X](P |X�x) � 0. For
P � δx , one obtains f [X](δx) � 0. �

Example 3.8. We compute now H1(S,Fα(Π)), taking S equal to 0 → 1, and E(0) �
{a , b}. Proposition Proposition 3.7 implies that f [0](1, 0) � f [0](0, 1) � 0, as a
consequence of f [0] � f [0]+ 0. f [0]. All the other relations derived from the cocycle
condition (3.19) become tautological. Therefore, 1-cocycles are in correspondence
with measurable functions f on arguments (pa , pb) such that f (1, 0) � f (0, 1) � 0.
We conclude that H1(S,Fα(Q)) has infinite dimension. For amore general condition
under which dim H1 diverges, see Proposition 3.16.

The functions Sα[X] introduced in (3.1) and (3.2) are local, since they only depend
on X∗P. The following proposition establishes that they correspond to a 1-cocycles.
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Proposition 3.9. Let (S, E) be an information structure, Q an adapted probability functor,
X an element of Ob S, and Y, Z ∈ Ob S two variables refined by X. Then, for all α > 0, the
section Sα of Fα(Q) satisfy the relation

(Sα)X[YZ] � (Sα)X[Y] + (Y.Sα)X[Z]. (3.20)

This means that Sα belongs to Z1(S,Fα(Q)).

Proof. Let P be a probability in QX . We further simplify the notation, writing P(y)
instead of P(Y � y) � Y∗P(y), and P(z |y) in place of P(Z � z |Y � y). We label the
points in E(YZ) by their image under the injection ι : E(YZ) → E(Y) × E(Z), writing
w(y , z) ∈ E(YZ).

1. Case α � 1: by definition

−S1[YZ](P) �
∑

w(y ,z)∈E(YZ)
P(y , z) log P(y , z)

and in fact we can extend this to a sum over the whole set E(X) × E(Y), setting
P(y , z) � 0whenever (y , z) < im ι (recall the convention 0 log 0 � 0). We rewrite
the previous expression using the conditional probabilities

−S1[YZ](P) �
∑
z∈EZ

∑
y∈EY

P(z |y)P(y)(log P(y) + log P(z |y))

�

∑
y∈EY

P(y) log P(y)
∑
z∈EZ

P(z |y) +
∑
y∈EY

P(y)
∑
z∈EZ

P(z |y) log P(z |y).

This gives the result, because
∑

z∈EZ P(z |y) � 1, and
∑

z∈EZ P(z |y) log P(z |y) �
S1[Z](P |Y�y). Cf. [49].

2. Case α , 1: The result is a consequence of δ2 � 0, but can be proved by a direct
computation.

(1 − α)(S[Y] + X.S[Y]) � ©«
∑
y∈EY

P(y)α − 1ª®¬ +
∑
y∈EY

P(y)α
(∑

z∈EZ

P(z |y)α − 1

)
�

∑
y∈Y

∑
z∈Z

P(z |y)αP(y)α − 1

� (1 − α)S[XY].

The last equality comes from P(z |y)P(y) � P(z , y), and the fact that we can
restrict the sum to E(YZ), neglecting terms that vanish.

�

We shall see that any nontrivial 1-cocycle of type α is locally a multiple of Sα; we
still have to formalize this notion of locality. Proposition 3.10 present the solution
to a functional equation that comes from the cocycle condition. Then, Proposition
3.13 determine the local form of a cocycle. Finally, Theorem 3.14 determine H1

under appropriate nondegeneracy hypotheses on the information structure S and
the probability functor Q.
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For convenience, we introduce the functions

s1(p) :� −p log p − (1 − p) log(1 − p); (3.21)

sα(p) :� 1
1 − α (p

α
+ (1 − p)α − 1) (for α , 1), (3.22)

both defined for p ∈ [0, 1].

Theorem 3.10 (Generalized FEITH). Let f1 , f2 : ∆2 → R be two unknown measurable
functions satisfying

1. fi(0, 1) � fi(1, 0) � 0 for i � 1, 2.
2. for all (p0 , p1 , p2) ∈ ∆2,

(1 − p2)α f1

(
p0

1 − p2
,

p1

1 − p2

)
− f1(1 − p1 , p1) (3.23)

� (1 − p1)α f2

(
p0

1 − p1
,

p2

1 − p1

)
− f2(1 − p2 , p2).

Then, f1 � f2 and there exists λ ∈ R such that f1(p) � λsα(p).

Proof. The restriction to p0 � 0 (with p1 � x , p2 � 1 − x) implies f2(x , 1 − x) �
f1(1 − x , x). We eliminate f2 in (3.23) and set u(x) :� f1(x , 1 − x). Setting p1 � x,
p2 � y and p0 � 1 − x − y, we obtain the functional equation

u(1 − x) + (1 − x)αu
( y

1 − x

)
� u(y) + (1 − y)αu

(
1 − x − y

1 − y

)
. (3.24)

This functional equation is related to the so-called “fundamental equation of informa-
tion theory”, which first appeared in the work of Tverberg [89]. In [47], Kannappan
and Ng show that every measurable solution of (3.24) with α � 1 has the form
u(x) � λs1(x), with λ ∈ R. Analogously, we show in Chapter 5 that the general
solution in the case α , 1 is u(x) � λsα(x), with λ ∈ R; this is directly connected to a
generalization of the fundamental equation introduced by Daróczy in [25]. �

Example 3.11. Let S be the free category generated by

1

X1 X2

X1X2

← →
←

→

←

→ ← →
(3.25)

and E be the functor defined at the level of objects by E(X1) � {x{1} , x{0,2}}, E(X2) �
{x{2} , x{0,1}}, and E(X1X2) � {x{1} , x{2} , x{3}}; for each arrow π : X → Y, the map
π∗ : E(X) → E(Y) sends xI → x J iff I ⊂ J. The pair (S, E) is an information structure
(in fact, it comes from a concrete one). Consider f ∈ Z1(Fα(Π)): the cocyle condition
means that, as functions on Π(X1X2),

f [X1X2] � X1. f [X2] + f [X1] and f [X1X2] � X2. f [X1] + f [X2]. (3.26)
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Write f [X1] � f1 and f [X2] � f2. Clearly, the determination of f1 and f2 such
that X1. f2 + f1 � X2. f1 + f2 fix f completely. In terms of a probability (p0 , p1 , p2)
in Π(X1X2) this equation is exactly (3.23). We conclude that every cocycle is a
multiple of the corresponding α-entropy: there exists a unique constant λ ∈ R such
that f [Z](P) � λSα[Z](P), for every variable Z ∈ Ob S and every probability law
P ∈ Π(X1X2). This establishes that Z1(S,Fα(Π)) � R. Hence H1(S,F1(Π)) � R,
and H1(S,Fα(Π)) � 〈0〉. The hypotheses are minimal: on one hand, if we remove
X1 or X2, Proposition 3.16 shows that dim H1 � ∞; on the other, if QX1X2 does
not contain the interior of ∆2, the cocycle equations accept an infinite number of
solutions, because one cannot obtain (3.23).

We want to extend this result to more general triples (S, E,Q). The strategy is to
reduce the problem to the equations in Proposition 3.10, as we did in the previous
example: first, considering a product XY with good properties, and then deducing
some functional equations for f [X] and f [Y]. This is carried out in Proposition 3.13,
that you can readdirectly if you suppose thatEXY � EX×EY andQ � Π. We introduce
now the notion of nondegenerate product, that states precisely what is needed for the
proof. The condition should be thought as some kind of “transversality” between
X and Y. If many events {X � x ,Y � y} are impossible, then the product XY
degenerates.

Remarks on notation: to avoid confusion with subindexes, we denote the (i , j)
component of a matrix M by M[i , j]. Recall that each set QX is a simplicial subcom-
plex ofΠ(X). For each S ⊂ EX , we denote [S] the face ofΠ(X) generated by the Dirac
laws { δx | x ∈ S }, which implies that QX ∩[S] is the set of probabilities in QX whose
support is contained in S.

Definition 3.12. Given two partitions X and Y, such that |EX | � k and |EY | � l, we
call its product XY nondegenerate if there exist enumerations {x1 , ..., xk} of EX and
{y1 , ..., yl} of EY , and a North-East (NE) lattice path3 (γi)mi�1 on Z2 going from (1, 1)
to (k , l) such that

1. For each γi � (a , b), the simplicial complex

QXY ∩ [ι−1{ (xi , y j) | a ≤ i ≤ a + 1 and b ≤ j ≤ b + 1 }]

has at least one 2-dimensional cell. Here ι denotes the injectionEXY ↪→ EX×EY .
2. If γi � (a , b) and γi+1 − γi � (1, 0), we ask that for every law p in QX ∩ [{ xi | a ≤

i ≤ k }] there exists a law p̃ in the intersection of QXY and

[ι−1({(xa , yb+1)}∪{ (xi , yb) | a+1 ≤ i ≤ k })]∪[ι−1({(xa , yb)}∪{ (xi , yb+1) | a+1 ≤ i ≤ k })]

such that p � X∗ p̃.
Analogously, if γi+1−γi � (0, 1), weask that every law p inQY∩[{ yi | b ≤ i ≤ l }]
there exists a law p̃ in the intersection of QXY with

[ι−1({(xa+1 , yb)}∪{ (xa , y j) | b+1 ≤ j ≤ l })]∪[ι−1({(xa , yb)}∪{ (xa+1 , y j) | b+1 ≤ j ≤ k })]

such that p � Y∗ p̃.

3A North-East (NE) lattice path on Z2 is a sequence of points (γi)mi�1 ⊂ Z
2 such that γi+1 − γi ∈

{(1, 0), (0, 1)} for every i ∈ {1, ...,m − 1}.
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Remark that the product of a variable X with itself is always degenerate, because
it only accepts nontrivial probabilities for pairs (x , x) ∈ E2

X .

Proposition 3.13. Let (S, E) be a finite information structure, Q an adapted probability
functor, and X, Y two different variables in Ob S such that XY ∈ Ob S. Let f be a 1-cocycle
of type α, i.e. an element of Z1(S,Fα(Q)). If XY is nondegenerate, there exists λ ∈ R such
that

f [X] � λSα[X], f [Y] � λSα[Y], f [XY] � λSα[XY].

Proof. As f is a 1-cocycle, it satisfies the two equations derived from (2.29)

Y. f [X] � f [XY] − f [Y], (3.27)
X. f [Y] � f [XY] − f [X]. (3.28)

and therefore the symmetric equation

X. f [Y] − f [Y] � Y. f [X] − f [X]. (3.29)

For a law P, we write (
s t u . . .
p q r . . .

)
if P(s) � p, P(t) � q, P(u) � r, etc. and the probabilities of the unwritten parts are
zero.

Fix enumerations (x1 , ..., xk) and (y1 , ..., yl) that satisfy the definition of nonde-
generate product, and let {γi}mi�1 be the corresponding NE path. Write γi � (a , b). If
γi+1 − γi � (1, 0), we shall show that the following recursive formula holds:

f [X]
(

xa . . . xk
µa . . . µk

)
� (1 − µa)α f [X]

(
xa+1 . . . xk

µa+1/(1 − µa) . . . µk/(1 − µa)

)
+ f [X]

(
xa xa+1
µa 1 − µa

)
. (3.30)

Analogously, if γi+1 − γi � (0, 1),

f [Y]
(

yb . . . yl
νb . . . νl

)
� (1 − νb)α f [Y]

(
yb+1 . . . yl

νb+1/(1 − νc) . . . νl/(1 − νb)

)
+ f [Y]

(
yb yb+1
νb 1 − νb

)
. (3.31)

Suppose that γi+1 − γi � (1, 0). Let

p �

(
xa . . . xk
µa . . . µk

)
be a probability in QX ∩ [{ xi | a ≤ i ≤ k }]. We know it has a preimage p̃ un-
der marginalization X∗ as in Definition 3.12-(2): for such law, knowledge of X im-
plies knowledge of Y with certainty, therefore X. f [Y](p̃) � 0; by equation (3.28),
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f [XY](p̃) � f [X](X∗ p̃) � f [X](p). Equation (3.27) reads

(1 − µa)α f [X]
(

xa+1 . . . xk
µa+1/(1 − µa) . . . µk/(1 − µa)

)
�

f [X]
(

xa . . . xk
µa . . . µk

)
− f [Y] ◦ τ

(
yb yb+1

1 − µa µa

)
, (3.32)

where τ is the identity or the transposition of the arguments. In any case, setting
µa+1 � 1 − µa and µa+2 � . . . � µk � 0, we conclude that

f [X]
(

xa xa+1
µa 1 − µa

)
� f [Y] ◦ τ

(
yb yb+1

1 − µa µa

)
, (3.33)

which combined with (3.32) implies (3.30). The identity (3.31) can be obtained
analogously.

We proceed to the determination of

φa(z) :� f [X]
(

xa xa+1
z 1 − z

)
and ψb(z) :� f [Y]

(
yb yb+1
z 1 − z

)
, for z ∈ [0, 1].

Let b1 , b2 , b3 be the three elements of EXY ⊂ EX × EY such that [δb1 , δb2 , δb3] is the
2-cell given by Definition 3.12-(1) when γi � (a , b). For any µ � (µ0 , µX , µY) ∈ ∆2, set
P(bi) :� µY , where bi is the component that differ from the others on the y-coordinate
(in such a way that Y∗µ is (µY , 1 − µY)). Similarly, set P(b j) :� µX , where b j is the
component that differ from the others on the x-coordinate. With this assignment,
the equation (3.29) gives:

(1 − µX)α f [Y] ◦ σ
(

yb yb+1
µ0/(1 − µX) µY/(1 − µX)

)
− f [Y] ◦ σ

(
yb yb+1

1 − µY µY

)
� (1 − µY)α f [X] ◦ τ

(
xa xa+1

µ0/(1 − µY) µY/(1 − µY)

)
− f [X] ◦ τ

(
xa xa+1

1 − µX µX

)
, (3.34)

where σ, τ are the identity or the transposition of both nontrivial arguments. In
any case, this leads to the functional equation in Proposition 3.10, which imply that
φa(z) � ψb(z) � λsα(z) for certain λ ∈ R (the solution is symmetric in the arguments).

When considering γi+1, one finds the functions φa and ψb+1, or the functions φa+1
and ψb , since the difference γi+1 − γi is either (0, 1) or (1, 0). This ensures that the
constant λ that appears for each γi is always the same.

Repeat the process above with every γi (1 ≤ i ≤ m). The collection of equa-
tions (3.30) obtained in this way, together with the functions already determined

f [X]
(

xa xa+1
z 1 − z

)
, 1 ≤ a ≤ k − 1, entails that

f [X](µ1 , . . . , µk) � λ
k−1∑
i�0

©«1 −
i∑

j�1
µ j

ª®¬
α

sα
©«

µi+1(
1 −∑i

j�1 µ j

) ª®®¬ . (3.35)

Set Ti :� 1 −∑i
j�1 µ j . A direct computation shows that, when α � 1,

k−1∑
i�0
(1 − Ti) s1

(
µi+1

(1 − Ti)

)
�

k∑
i�1

µi log µi , (3.36)



Probabilistic information cohomology 89

and when α , 1,
k−1∑
i�0
(1 − Ti)α sα

(
µi+1

(1 − Ti)

)
�

k∑
i�1

µαi − 1. (3.37)

Therefore, for any α > 0, we have f [X] � λSα[X]. Analogously, f [Y] � λSα[Y]. �

3.5 Determination of H1

In this section, we shall specify conditions on (S, E,Q) that allows us to determine
H1(S,Fα(Q)).

We call a variable Z reducible if there exist X,Y ∈ Ob S\ {1, Z} such that Z � XY,
and irreducible otherwise.

We denote by min(S) the set of minimal objects in S: these are the Y ∈ Ob S such
that �X ∈ Ob S with X → Y.

Theorem 3.14. Let (S, E) be a bounded, finite information structure, and Q an adapted
probability functor. Denote by S∗ the full subcategory of S generated by Ob S \ {1}. Suppose
that every minimal object can be factored as a nondegenerate product. Then,

H1(S,F1(Q)) �
∏

[C]∈π0(S∗)
R · SC

1 (3.38)

and, when α , 1,

H1(S,Fα(Q)) �
©«

∏
[C]∈π0(S∗)

R · SC
α
ª®¬ /R · Sα (3.39)

In the formulae above, C represents a connected component of S∗, and

SC
α [X] �

{
Sα[X] if X ∈ Ob C
0 if X < Ob C

Proof. Let f be an element of Z1(S,Fα(Q)). If every M ∈ min(S) can be factorized
as a nondegenerate product, Proposition 3.13 implies that f [M] � λMSα[M], where
λM is a constant that depends a priori on M. If M → Z in S,

f [Z] � f [M] − Z. f [M] � λMSα[M] − Z.(λMSα[M]) � λMSα[Z]. (3.40)

If Z is refined by two variables M,N ∈ min(S), we can apply the previous formula
twice to conclude that f [Z] � λMSα[Z] � λN Sα[Z], and therefore λM � λN .

Let M,N be two elements of min(S). If they belong to the same connected
component of S∗, there is a zig-zag diagram in S∗ of the form

M → X1 ← M1 → X2 ← M2 → · · · ← Mk → Xk+1 ← N

for certain k ∈ N, where Mi ∈ min(S) for all i. The repeated application of the
argument in the previous paragraph implies that λM � λM1 � · · · λN .

On the other hand, if C and C′ are different components of S∗, there is no cocycle
equation that relates f [X] and f [Y], for any variables X ∈ Ob C and Y ∈ Ob C′. In
fact, such a cocycle equation only is possible if there is a third nontrivial variable Z
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such that X,Y ∈ SZ, and therefore [X], [Y] appear as generators of B1(Z); but this
would mean that X ← Z→ Y in S∗.

The previous argument proves that Z1(S,Fα(Q)) �
∏

C∈π0(S∗) R · SC
1 , and we saw

in Section 3.4 that δC0(S,F1(Q)) � 〈0〉 and δC0(S,Fα(Q)) � R · Sα. �

As a byproduct of the previous proof, we also obtain the following proposition.

Proposition 3.15. Let {(Si , Ei ,Qi)}i∈I be a collection of triples that satisfy separately the
hypotheses stated in Theorem 3.14. Then,

Z1

(∐
i∈I

S,F (
∐
i∈I

Q)
)
�

∏
i∈I

Z1(Si ,F (Qi)).

Proof. The category (∐n
i�1 S)∗ is the disjoint union of the categories S∗i , for i ∈ I. �

The cases uncovered by Theorem 3.14 can be classified in two families:
1. There is an irreducible minimal object;
2. All minimal objects are reducible, but some of them cannot be written as

nondegenerate products.
In the latter case, all kinds of behaviours are possible, as the examples at the end this
section show.

In the Example 3.8, we proved that H1(S,Fα(Q)) has infinite dimension when
S � Obsfin({0, 1}); in this case, there is only one nontrivial variable and it is obviously
irreducible. Now we proceed to the generalization of this result.

Proposition 3.16. Let (S, E) be an information structure and Q an adapted probability
functor. Let M ∈ min(S) be an irreducible minimal object, X1 , ...,Xn all the variables
coarser than M and suppose that

M → X1 → ...→ Xn → 1,

in S. Moreover, suppose that there exists k ∈ {1, ..., n} such that, for some x ∈ E(Xk), the set
Qx

M :� { P |Xk�x | P ∈ QM } contains at least one nonatomic law.4 Then,dim H1(S,Fα(Q)) �
∞.

Proof. Let k̃ be the smallest k that satisfies the stated hypothesis. Set f [Xi] � 0 for
i � k̃ , ..., n. We shall show that f [M] can be chosen arbitrarily.

The cocycle equations are

0 � Xi . f [M] − f [Xi M] + f [Xi], i � 1, ..., n.

For i < k̃, the term Xi . f [M] vanishes because all conditioned laws P |Xi�x give δ-laws.
This implies that f [Xi] � f [M]. For i � k̃, we obtain f [M] � Xk̃ . f [M]. Given this
one, the others equations become redundant, since

X j . f [M] � X j .(Xk̃ . f [M]) � (X jXk̃). f [M] � Xk̃ . f [M], for j > k̃.

Let P ∈ QM and P̃ � (Xk̃)∗P ∈ QXk̃
. The equation f [M] � Xk̃ . f [M] reads

f [M](P) �
∑
x∈Xk̃

P̃(x) f [M](P |Xk̃�x).

4The law P ∈ QM is atomic if P � δm for some m ∈ M.
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If P |Xk̃�x � δm for some m ∈ M (atomic law), then f [M](P |Xk̃�x) � 0; otherwise, no
condition determines f [M](P |Xk̃�x). This means that, for each set Qx

M that contains
nonatomic laws, we can introduce an arbitrary function. �

We illustrate the proof with an example. ConsiderΩ � {0, 1, 2} and the concrete
structure S given by

M � {{0}, {1}, {2}} → X1 � {{0, 1}, {2}} → 1Ω

In this case, there is an infinite family of cocycles given by f [X1] ≡ 0, f [1] ≡ 0 and

f [M](p0 , p1 , p2) � (p0+p1) f [M]
(

p0

p0 + p1
,

p1

p0 + p1
, 0

)
� (p0+p1)g

(
p0

p0 + p1
,

p1

p0 + p1

)
,

where g : ∆1 → R is an arbitrary measurable function such that g(1, 0) � g(0, 1) � 0.
To close this section, we make some remarks about case of reducible minimal

objects that cannot be written as nondegenerate products. If the product is degener-
ate, multiple constants can appear or the dimension of H1(S,Fα(Q)) can explode to
infinity, as the following examples show.

Example 3.17. Consider the information structure (S, E) given by the poset S repre-
sented by

1

X Y

XY
← → ←

→
←

→ ← →

and the assignment E(X) � {x1 , x2 , x3 , x4}, E(Y) � {y1 , y2 , y3 , y4}, and E(XY) �
E(X)×E(Y); the arrows aremapped to the terminalmaps and the canonical projectors.
Recall the notation [S] introduced before Definition 3.12. Let

QXY � Π(XY) ∩ ([{x1 , x2} × {y1 , y2}] ∪ [{x3 , x4} × {y3 , y4}]). (3.41)

Therefore, we just need to determine

f [X]
(

x1 x2
p 1 − p

)
, f [X]

(
x3 x4
p 1 − p

)
, f [Y]

(
y1 y2
p 1 − p

)
and f [Y]

(
y3 y4
p 1 − p

)
,

for arbitrary p ∈ [0, 1]. Proposition 3.10 allows us to conclude that

f [X]
(

x1 x2
p 1 − p

)
� λ1sα(p), f [Y]

(
y1 y2
p 1 − p

)
� λ1sα(p). (3.42)

We can use this proposition a second time to show that

f [X]
(

x3 x4
p 1 − p

)
� λ2sα(p), f [Y]

(
y3 y4
p 1 − p

)
� λ2sα(p). (3.43)

However, from Equations (3.27) and (3.28) is impossible to find a relation between
λ1 and λ2 when P ∈ QXY . We conclude that Z1(Fα(Q)) � R2.
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Example 3.18. Let (S, E)be the information structure defined in the previous example
and

QXY � Π(XY) ∩ ([{x1 , x2} × {y1 , y2}] ∪ [{(x3 , y3), (x4 , y4)}]). (3.44)

As before, we conclude that

f [X]
(

x1 x2
p 1 − p

)
� λ1sα(p), f [Y]

(
y1 y2
p 1 − p

)
� λ1sα(p). (3.45)

Equations (3.27) and (3.28) imply that

f [XY]
(
(x3 , y3) (x4 , y4)

p 1 − p

)
� f [X]

(
x3 y3
p 1 − p

)
� f [Y]

(
y3 y4
p 1 − p

)
. (3.46)

and these are the only relations between these functions. Any measurable g :
∆1 → R such that g(0, 1) � g(1, 0) � 0 solves these equations. This means that
dim Z1(Fα(Q)) � ∞.

3.6 Functorial extensions of algebras

The cocycle equation has a meaning in the context of extensions of algebras. We
introduce first some general definitions and results from [95]; what is said there for
algebras remains valid with presheaves of algebras.

Let Λ be a presheaf of R-algebras on S. An extension of Λ is an epimorphism
σ : Γ → Λ. The extension is called singular (or square zero) if ker(σX)2 � 0 for all
X ∈ Ob S (in this case, ker(σX) can be regarded as aΛX-bimodule). It is called cleft if
there exists a morphism φ : Λ→ Γ, φX morphism of algebras, such that σ ◦ φ � 1Λ.
Given a Λ-bimodule M, a singular extension of Λ by M is a short exact sequence

0 M Γ Λ 0←→ ←→ξ ←→σ ←→ (3.47)

where ξ is amorphism of Γ-bimodules (M is Γ-bimodule by γ.m � σ(γ).m, etc.). Two
extensions are called congruent if there is an algebra morphism γ : Γ→ Γ′ making

Γ

0 M Λ 0

Γ′

←

→
σ←

→

γ←→

← →ξ

←

→
ξ′

←→

←→σ′

commute.
A particular singular cleft extension of Λ by M is given by the semidirect sum,

defined to be the presheaf of vector spaces M ⊕Λwith product defined by (m1 , λ1) •
(m2 , λ2) � (m1λ2 + λ1m2 , λ1λ2); with ξ(m) � (m , 0) and σ(m , λ) � λ. The following
Proposition is a well known result.

Proposition 3.19. Any singular cleft extension is congruent to M oΛ.
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In our case, Λ � A and M � Fα :� Fα(Q), turned into a presheaf of A − A -
bimodules with trivial right action: this means that each variable acts as the identity
endomorphism. If Γ is a singular cleft extension of A by Fα, it is isomorphic to
Fα o A . What are the possible morphisms φ : A → Fα o A that implement this
splitting? Set φ(X) � (d[X],X); since φX is a morphism of algebras,

(d[Y],Y) • (d[X],X) � (d[YX],YX) ⇔ (d[Y] + Y.d[X],YX) � (d[YX],YX).

Thus d must be a 1-cocycle (also called derivation in this context). In this chapter, we
have proved that in general there is no choice, one must take the entropy. Therefore,
we can say that the entropy is the unique derivation that transforms a multiplica-
tive operation on partitions into an additive operation on functions, introducing an
appropriate ‘twist’.

Note that the definition of Fα guarantees that d[X](P) depends only on X∗P.
This turns out to be the appropriate notion of locality and justifies the introduction
of presheaves.

The extensions that are singular and R-split (instead of cleft) are classified by
H2(S,Fα): the morphism φX : AX → ΓX gives a natural vector space decomposition
ΓX ' AX ⊕Fα(X), with product given by (X, f )•(Y, g) � (XY, f +X.g+ a(X,Y)). The
function a : A ⊗RA → R is called the factor set of the extension and the associativity
of the product in Γ entails that a is a 2-cocycle.

3.7 Product structures and divergence
We prove in this section that the Kullback-Leibler (KL) divergence and the cross-
entropy are cocycles for an adapted module of coefficients. Both quantities measure
the relation between two probability laws; the KL divergence gives a nonsymmetric
notion of distance. The proof is elementary and sheds some light on the meaning of
these cocycle equations from the probabilistic viewpoint.

Let (X,Y) be a joint random variable taking values in a set EXY ⊂ EX × EY ,
with certain probability law P � {P(x , y)}(x ,y)∈EXY . Suppose n measurements of this
variable are performed, obtaining in this way a realization z � (z1 , ..., zn) ∈ En

XY ;
define then the empirical distribution Q by the formula

∀(a , b) ∈ EXY , Q(a , b) �
|{ (x , y) ∈ EXY | x � a and y � b }|

n
. (3.48)

The probability of the realization z is (cf. [23, § 2])

P⊗n(z) �
∏

(x ,y)∈EXY

P(x , y)Q(x ,y)n (3.49)

� exp ©«n
∑

(x ,y)∈EXY

Q(x , y) log P(x , y)ª®¬ (3.50)

� exp ©«n
∑

(x ,y)∈EXY

Q(x , y) log
P(x , y)
Q(x , y) + n

∑
(x ,y)∈EXY

Q(x , y) log Q(x , y)ª®¬ (3.51)

� exp(−n{D[XY](Q | |P) + H[XY](Q)}) (3.52)
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where we have used the definition of the Kullback-Leibler (KL) divergence

∀P1 , P2 ∈ Π(X), D[X](P1 | |P2) :� −
∑

x∈EX

P1(x) ln
P2(x)
P1(x)

. (3.53)

Whenever Q(x) :� X∗Q(x) , 0, we have the conditional probability

Q(y |x) �
Q(x , y)

Q(x) . (3.54)

The case Q(x) � 0 is not relevant for our computation for it forces Q(x , y) to vanish
for any y and the corresponding factor in (3.49) is P(x , y)Q(x ,y)n � 1 i.e. it does not
contribute to the product, that can be restricted to Q(x , y) , 0, and similarly the
sums.

Writing P(y |x)p(x) instead of P(x , y), we also have that

P⊗n(z) �
∏

(x ,y)∈EXY
Q(x ,y),0

(P(y |x)P(x))Q(x ,y)n (3.55)

�

∏
(x ,y)∈EXY
Q(x ,y),0

P(x)Q(x ,y)n
∏

(x ,y)∈EXY
Q(x ,y),0

P(y |x)Q(x ,y)n (3.56)

�

∏
x∈EX

Q(x),0

P(x)Q(x)n
∏

(x ,y)∈EXY
Q(x ,y),0

P(y |x)Q(y |x)Q(x)n (3.57)

� exp

(
n

∑
x∈EX

Q(x) ln P(x)
) ∏

x∈EX
Q(x),0

exp ©«nQ(x)
∑
y∈EY

Q(y |x) ln P(y |x)ª®¬ . (3.58)

For convenience, let us introduce the cross-information

C[X](Q : P) � −
∑

x∈EX

Q(x) ln P(x). (3.59)

Note that D[X](Q | |P) � C[X](Q : P) − H[X](Q) and C[X](Q : Q) � H[X](Q).
A comparison of the exponents in equations (3.50) and (3.58) shows that

C[XY](Q : P) � C[X](X∗Q : X∗P) +
∑
y∈EY

Q(x)C[Y](Q |X�x : P |X�x). (3.60)

This is the 1-cocycle condition of information cohomology with coefficients in the
following bivariate module (called ‘product structure’ in [10, Sec. 5]): for each X
in Ob S, let F (2)(X) be the vector space of measurable functions f : QX ×QX → R,
for a given functor of probabilities Q, and define the action of SX on F (2)(X) by the
formula:

∀Y ∈ SX , ∀ f ∈ F (2)(X), ∀P,Q ∈ QX , (Y. f )(Q , P) �
∑
y∈EY

Q(y) f (Q |Y�y , P |Y�y).

(3.61)
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This gives a functorial action of monoids; the proof is just a modification of those
in Section 3.1. Therefore F (2) has the structure of A -module, that we denote F

(2)
1 .

Then (3.60) is the cocycle condition. By its frequentist nature, the proof above only
works for rational Q, but (3.60) must be valid everywhere by continuity.

In the particular case P � Q, this shows that H is a 1-cocycle. By additivity, the
KL is a cocycle too. Cf. The proof of Proposition 4 in [10].

The KL divergence also accepts an α-deformation. It can be formulated very
naturally by introducing first the α-logarithm:

lnα(x) :�
∫ x

1

1
tα

dt �
x1−α − 1

1 − α . (3.62)

Remark that lnα → ln1 � ln when α → 1. Shannon entropy S1[X](P) equals
EP (− ln P(X)), whereasTsallis α-entropySα[X](P) isEP (− lnα P(X)). The α-logarithm
satisfies [88, p. 38]

∀x , y > 0, ln(x y) � ln(x) + ln(y) − (α − 1) ln(x) ln(y). (3.63)

The natural definition for the generalized KL divergence is, for all α > 0,

Dα[X](Q | |P) �
∑

x∈EX

Q(x) lnα
(

Q(x)
P(x)

)
(3.64)

the case α � 1 recovers (3.53).
Writing P(y |x)P(x) instead of P(x , y) (the same for Q) and using 3.63, we obtain

Dα[XY](Q | |P)

�

∑
(x ,y)∈EXY

Q(x , y) lnα
(

Q(y |x)Q(x)
P(y |x)P(x)

)
�

∑
(x ,y)∈EXY

Q(x , y)
(
lnα

(
Q(x)
P(x)

)
+ lnα

(
Q(y |x)
P(y |x)

)
− (α − 1) lnα

(
Q(x)
P(x)

)
lnα

(
Q(y |x)
P(y |x)

))
� Dα[X](X∗Q | |X∗P) +

∑
(x ,y)∈EXY

Q(x , y)
(
lnα

(
Q(y |x)
P(y |x)

)
−

((
Q(x)
P(x)

)α−1

− 1

)
lnα

(
Q(y |x)
P(y |x)

))
� Dα[X](X∗Q | |X∗P) +

∑
x∈EX

Q(x)
(

Q(x)
P(x)

)α−1

Dα[Y](Y∗Q |Y�y | |Y∗P |Y�y)

Since Dα[X] belongs to F (2)(X), the vector space of functions introduced above,
and satisfies the preceding equation, we conclude that it is also a cocycle for an
A -module F

(2)
α such that the variables act as follows: for all X ∈ Ob S, Y ∈ SX ,

f ∈ F (X) and (P,Q) ∈ Q2
X ,

(Y. f )(Q , P) �
∑
y∈EY

Q(y)
(

Q(y)
P(y)

)α−1

f (Q |Y�y , P |Y�y)

�

∑
y∈EY

Q(y)αP(x)1−α f (Q |Y�y , P |Y�y). (3.65)
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The case α � 1 recovers the action (3.61).
Here we should take into account that P and Q are in fact densities of measures

ρ and τ, respectively. Let ν denote the counting measure on EX . In terms of these
measures, the action (3.65) is

(Y. f )(τ, ρ) �
∫

EY

f (Q |Y�y , P |Y�y)
(

dτ
dν

)α (
dρ
dν

)1−α
dν (3.66)

When ρ � ν, we recover the action (3.3). This is clarified in Chapter 12: the KL diver-
gence is in fact a particular case of relative entropy, and the usual Shannon entropy
is the relative entropy with respect to the counting measure. The relative entropy
has a general interpretation from the point of view of the asymptotic equipartition
property: the reference measure gives the appropriate notion of volume. In this
section the reference measure was P, because we were interested in the probabilities
of realizations z according to this law.



Chapter 4

Combinatorial information
cohomology

4.1 Counting functions

Let (S, E) be a finite information structure, and C : S→ Sets a functor that associates
to each object X the set

CX �

{
ν : EX → N

�� ∑
x∈EX

ν(x) > 0

}
, (4.1)

and to each arrow f : X → Y, associated to a surjection E( f ) � πYX : EX → EY , the
map C ( f ) : C (X) → C (Y) that verifies (C ( f )(ν))(y) � ∑

x∈π−1
YX(y)

ν(x). To simplify
notation, we shall write Y∗ν instead of C ( f )(ν), whenever X is clear from context.
The elements of CX are called counting functions. For νX ∈ CX , we define its support
as { x ∈ EX | νX(x) , 0 }, and its magnitude as the quantity ‖v‖ :�

∑
x∈X ν(x).

For any subset A of X, we define

ν |A(x) :�

{
ν(x) if x ∈ A
0 otherwise

. (4.2)

When ‖ν |A‖ > 0, we call ν |A the restricted counting given A ⊂ X. Given an arrow
f : X → Y, the notation ν |Y�y stands for ν |π−1

YX(y)
. Remark that ν∅ � 0 and

ν |Y�y
 �

Y∗ν(y).
Consider now themultiplicative abelian groupGX , whose elements areR∗+-valued

measurable functions defined on CX . By R∗+ we mean { x ∈ R | x > 0 }. (The multi-
plicative notation is convenient, because multinomial coefficients appear directly as
cocycles.) The group GX becomes a real vector space if we define (r. f )(ν) :� ( f (ν))r ,
for each f ∈ GX and each r ∈ R. 1 For each Y ∈ SX and each g ∈ GX , set 2

(Y.g)(ν) :�
∏
y∈EY

Y∗ν(y),0

g(ν |Y�y). (4.3)

1In principle this is a right action, but this is immaterial because R is commutative.
2In the probabilistic case, the sum (Y. f )(P) � ∑

y∈EY Y∗P(y) f (P |Y�y) can be restricted to those y ∈ EY
such that Y∗P(y) , 0.
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Finally, define (aY).g :� a.(Y.g) � Y.(a.g). As a consequence of the following propo-
sition, these formulae give an homomorphism ρX : AX → End(GX), that turns GX
into an AX-module.

Proposition 4.1. Given variables Y, Z ∈ SX and f ∈ GX ,

ZY. f � Z.(Y. f ). (4.4)

Proof.

Z.(Y. f )(ν) �
∏
z∈EZ

Z∗ν(z),0

(Y. f )(ν |Z�z) (4.5)

�

∏
z∈EZ

Z∗ν(z),0

∏
y∈EY

Y∗ν |Z�z(y),0

f ((ν |Z�z)|Y�y). (4.6)

From the definition of conditioning, we deduce that (ν |Z�z)|Y�y � ν |{Z�z}∩{Y�y} �
ν |A(y ,z), where we have set A(y , z) :� π−1

YX(y) ∩ π
−1
ZX(z).

Set W equal to ZY :� Z ∧ Y, the meet in the poset S. Since in S we have the
commutative diagram

X

Y W Z

←

→

←

→

←→

←→ ← →

we obtain the following commutative diagram of sets

E(X)

E(Y) E(W) E(Z)

E(X) × E(Y)

←

→

πYX

←

→
πZX←→ πWX

←→

πYW

← →πZW

←
↩

→ ι
←

→

π1 ←

→
π2

where the upper triangle is explained by the functoriality of E and the lower one
by the universal property of products in Sets; ι is an injection by definition of an
information structure.

This implies that A(y , z) :� π−1
YX(y) ∩ π

−1
ZX(z) � π−1

WX ι
−1(π−1

1 (y) ∩ π−1
2 (x)). If

(y , z) < im ι, A(y , z) is empty, so ν |A(y ,z) � 0, as well as
ν |A(y ,z) � Y∗ν |Z�z(y) � 0.

Therefore, theproduct in (4.6) canbe restricted topairs (y , z) ∈ im ι, and the condition
Y∗ν |Z�z(y) �

ν |A(y ,z) , 0 translates into W∗ν(ι−1(y , z)) �
ν |A(y ,z) , 0. Since there

is a bĳection YZ � im ι, upon relabeling we obtain the desired equality. �

To any arrow π : X → Y, we associate the map G (π) : GY → GX such that
G (π)( f ) � f ◦ C (π). Then G : S → Sets is a contravariant functor. In fact, it is a
presheaf of A -modules: Proposition 3.2 has an obvious analogue in this setting.
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4.2 Description of cocycles
Following the considerations in Section 2.5 (and the notations introduced there), we
study the differential complex (Cn(G ), δ), with Cn(G ) :� HomA (Bn , G ), of combina-
torial n-cochains. These cochains are jointly local and equivariant.

The coboundary of f ∈ Cn(G ) is the (n + 1)-cochain δ f : Bn+1 → G defined on
the generators of Bn+1 by

δ f [X1 |...|Xn+1] �

(X1. f [X2 |...|Xn+1])
(

n∏
k�1

( f [X1 |...|XkXk+1 |...|Xn])(−1)k
)

f [X1 |...|Xn](−1)n+1
(4.7)

An n-cocycle is an element f in Cn(S, G ) that verifies δ f � 1; the submodule of
all n-cocycles is denoted by Zn(G ). The image under δ of Cn−1 forms another
submodule of Cn(G ), denoted δCn−1(G ); its elements are called n-coboundaries. By
definition, δC−1(G ) � 0. The corresponding combinatorial information cohomology
corresponds to

Hn(RS , G ) � Zn(G )/δCn−1(G ), (4.8)

for every n ≥ 0.

4.3 Computation of H0

The 0-cochains are given by a collection of functions { fX}X∈Ob S (the image of the
section [] under f ). Joint locality implies that, for every X ∈ Ob S, fX(ν) � f1(1∗νX) �
f1(‖νX ‖). Hence, 0-cochains are in one-to-one correspondence with measurable real-
valued functions of the magnitude, f̃ :� f1 : N∗ → R+.

A 0-cocycle f must verify, for each Y coarser than X, (δ f )X[Y] � (Y. fX)( fX)−1 � 1,
which taking into account the previous remarks reads

f̃ (‖νX ‖) �
∏
y∈Y

Y∗ν(y),0

f̃ (
ν |Y�y

). (4.9)

Whenever |Y | ≥ 2, this means in particular that

f̃ (x + y) � f̃ (x) f̃ (y) (4.10)

for every x , y ∈ N. Setting a :� f (1) > 0, one easily concludes by recurrence that
f̃ (n) � an � exp(n ln(a)). The function f̃ (x) � exp(kx), for arbitrary k ∈ R, is a
general solution of (4.9), because ‖νX ‖ �

∑
y∈Y

Y∗ν(y),0

ν |Y�y
. We have proved the

following proposition.

Proposition 4.2. Let Exp ∈ HomA (∗, G ) be the section defined by

ExpX : CX → R∗+ , ν 7→ exp(‖ν‖). (4.11)

Then,
H0(S, G ) � 〈Exp〉R. (4.12)
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4.4 Computation of H1

For any 1-cochain f , we set f [Z] :� fZ[Z] � fX[Z], the last equality being valid for
any X such that X → Z, by joint locality.

In order to compute the 1-cocycle, we prove first an auxiliary result.

Lemma 4.3. Let f ∈ Z1(G ). For every X ∈ Ob S, if ν ∈ CX verifies ν � ν |X�x for some
x ∈ EX , then f [X](ν) � 1.

In particular, f [1] ≡ 1.

Proof. The cocycle condition implies f [XX] � (X. f [X]) f [X], that reads∏
x∈EX
ν(x),0

f [X](ν |x) � 1. (4.13)

�

The following result will be essential for the characterization of all the 1-cocycles.
It is the combinatorial analogue of Proposition 3.10. Consequently, (4.14) and (4.16)
should be seen as combinatorial generalizations of the fundamental functional equa-
tion of information theory.

Theorem 4.4 (Combinatorial FEITH). Let f1 , f2 : N \ {(0, 0)} → R+ be two unknown
functions. The functions f1 , f2 satisfy the conditions

1. for i ∈ {1, 2}, for every n ∈ N∗, f (n , 0) � f (0, n) � 1.
2. for every ν0 , ν1 , ν2 ∈ N such that ν0 + ν1 + ν2 , 0,

f1(ν0 + ν2 , ν1) f2(ν0 , ν2) � f2(ν0 + ν1 , ν2) f1(ν0 , ν1). (4.14)

if, and only if, there exists a sequence of numbers D � {Di}i≥1 ⊂ R+, such that D1 � 1, and

f (ν1 , ν2) �
[ν1 + ν2]D!
[ν1]D![ν2]D!

, (4.15)

where [n]D! � DnDn−1 · · ·D1 whenever n > 0, and [0]D! � 1.

Proof. Setting ν0 � 0, we conclude first that f1(ν2 , ν1) � f2(ν1 , ν2). Define f (x , y) :�
f1(x , y); it satisfies the equation

f (ν0 + ν1 , ν2)
f (ν0 , ν2)

�
f (ν1 , ν0 + ν2)

f (ν1 , ν0)
. (4.16)

for any ν0 , ν1 , ν2 ∈ N such that ν0 + ν1 + ν2 , 0. In particular, if ν0 � t > 0, and
ν1 � ν2 � s > 0,

f (t + s , s)
f (s , t + s) �

f (t , s)
f (s , t) . (4.17)

Thus, for any n > 1,

f (n , 1)
f (1, n) �

f (n − 1, 1)
f (1, n − 1) � · · · �

f (1, 1)
f (1, 1) � 1. (4.18)
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Let Dn+1 be the common value of f (n , 1) and f (1, n). From Equation (4.16), setting
ν0 � n, ν1 � 1, and ν2 � k, we can obtain a recurrence formula for f (n + 1, k):

f (n + 1, k) � Dn+k+1
Dn+1

f (n , k). (4.19)

By repeated application of this recurrence, we conclude that

f (n , k) � Dn+k

Dn
· Dn+k−1

Dn−1
· · · Dk+1

D1
f (0, k). (4.20)

Remark that D1 � f (0, 1) � 1, and f (0, k) � 1 (Lemma 4.3). Therefore, f can be
rewritten as

f (ν1 , ν2) �
[ν1 + ν2]D!
[ν1]D![ν2]D!

. (4.21)

This formula still make sense when ν1 � 0 or ν2 � 0. Conversely, for any sequence
D � {Di}i≥1, with D1 � 1, the assignment f1 � f2 � f satisfies (4.16), and thus
represents the most general solution. �

The quotients {
ν1 + ν2
ν1 , ν2

}
D

:�
[ν1 + ν2]D!
[ν1]D![ν2]D!

(4.22)

were studied in detail by H. G. Gould [33], who called them Fontené-Ward binomial
coefficients. To our knowledge, three particular cases appear in the literature under
their own name:

1. Dn � n gives the usual binomial coefficients:
{
ν1+ν2
ν1 ,ν2

}
D
�

(ν1+ν2
ν1 ,ν2

)
.

2. Dn �
qn−1
q−1 gives the q-binomial coefficients, also known as Gaussian binomial

coefficients:
{
ν1+ν2
ν1 ,ν2

}
D
�

[
ν1+ν2
ν1 ,ν2

]
q
. For more details, see Section 6.1.

3. When D is the Fibonacci sequence, the expressions
{
ν1+ν2
ν1 ,ν2

}
D
are called Fibono-

mial coefficients.
Already Fontené [29] noted that

{n
k

}
D :�

{ n
k ,n−k

}
D

verifies the additive recurrence
formula {

n
k

}
D
−

{
n − 1

k

}
D
�

{
n − 1
k − 1

}
D

Dn − Dn−k

Dk
, (4.23)

with boundary conditions
{n

0
}

D �
{n

n

}
D � 1 for n ≥ 0. Conversely, this recurrence

formula implies that
{n

k

}
D must be given by the expression in (4.22), so also the

multiplicative relations (4.16).

Example 4.5. Let (S, E) be an information structure defined as follows: the poset S
is represented by

1

X1 X2

X1X2

← →
←

→

←

→ ← →
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and E is the functor defined at the level of objects by E(X1) � {x{1} , x{0,2}}, E(X2) �
{x{2} , x{0,1}}, and E(X1X2) � {x{1} , x{2} , x{3}}; for each arrow π : X → Y, the map
π∗ : E(X) → E(Y) sends xI → x J iff I ⊂ J.

For this structure, the cocycle condition give the equations

f [X1X2](ν0 , ν1 , ν2) � f [X2](ν0 + ν1 , ν2) f [X1](ν0 , ν1) f [X1](ν2 , 0), (4.24)
f [X2X1](ν0 , ν1 , ν2) � f [X1](ν0 + ν2 , ν1) f [X2](ν0 , ν2) f [X2](ν1 , 0). (4.25)

Since X � X1X2 � X2X1,

f [X2](ν0 + ν1 , ν2) f [X1](ν0 , ν1) � f [X1](ν0 + ν2 , ν1) f [X2](ν0 , ν2) (4.26)

where we have taken into account that f [X1](ν2 , 0) � f [X2](ν1 , 0) � 0. This is exactly
Equation (4.14), and the condition (1) in the statement is also met, therefore

f [X1](ν0 , ν1) � f [X2](ν0 , ν1) �
{
ν0 + ν1
ν0 , ν1

}
D

(4.27)

for some sequence D. From (4.24), we conclude that

f [X](ν0 , ν1 , ν2) �
{
ν0 + ν1 + ν2
ν0 , ν1 , ν2

}
D

:�
[ν0 + ν1 + ν2]D!
[ν0]D![ν1]D![ν2]D!

. (4.28)

Definition 4.6. Given any sequence D � {Di}i≥1 verifying D1 � 1 (called admissible
sequence), the corresponding Fontené-Ward multinomial coefficient is the 1-cochain
given by

∀ν ∈ C (X), WD[X](ν) �
[‖ν‖]D!∏

x∈EX [ν(x)]D!
. (4.29)

To characterize the cocycles associated to general products XY, we introduce a
definition of nondegeneracy analogous to Definition 3.12.

Definition 4.7. Given two partitions X and Y, such that |EX | � k and |EY | � l, we
call its product XY nondegenerate if there exist enumerations {x1 , ..., xk} of EX and
{y1 , ..., yl} of EY , and a North-East (NE) lattice path3 (γi)mi�1 on Z2 going from (1, 1)
to (k , l) such that

1. For each γi � (a , b), the set

ι−1{ (xi , y j) | a ≤ i ≤ a + 1 and b ≤ j ≤ b + 1 }

contains at least three different elements. Here ι denotes the injection EXY ↪→
EX × EY .

2. If γi � (a , b) and γi+1 − γi � (1, 0), we ask that for every counting function
ν ∈ CX such that supp ν ⊂ { xi | a ≤ i ≤ k }, there exists a counting function
ν̃ ∈ CXY whose support is contained in

ι−1({(xa , yb+1)} ∪ { (xi , yb) | a +1 ≤ i ≤ k })∪ ι−1({(xa , yb)} ∪ { (xi , yb+1) | a +1 ≤ i ≤ k })

and such that ν � X∗ ν̃.

3A North-East (NE) lattice path on Z2 is a sequence of points (γi)mi�1 ⊂ Z
2 such that γi+1 − γi ∈

{(1, 0), (0, 1)} for every i ∈ {1, ...,m − 1}.
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Analogously, if γi+1 − γi � (0, 1), we ask that every counting function ν ∈ CY
such that supp ν ⊂ { yi | b ≤ i ≤ l }, there exists a counting function ν̃ ∈ CXY
whose support is contained in

ι−1({(xa+1 , yb)}∪{ (xa , y j) | b+1 ≤ j ≤ l })∪[ι−1({(xa , yb)}∪{ (xa+1 , y j) | b+1 ≤ j ≤ k })

and such that ν � Y∗ ν̃.

Proposition 4.8. Let (S, E) be an information structure and X, Y two different variables in
Ob S such that XY ∈ Ob S. Let f be a combinatorial 1-cocycle i.e. an element of Z1(S, G ).
If XY is nondegenerate, there exists an admissible sequence D, such that

f [X] � WD[X], f [Y] � WD[Y], f [XY] � WD[XY].

Proof. Very similar to the proof of Proposition 3.13. As f is a 1-cocycle, it satisfies
the two equations derived from (4.7)

Y. f [X] f [Y] � f [XY], (4.30)
X. f [Y] f [X] � f [XY]. (4.31)

and therefore the symmetric equation

(X. f [Y]) f [Y] � (Y. f [X]) f [X]. (4.32)

For any counting function ν, we write(
s t u . . .
p q r . . .

)
if ν(s) � p, ν(t) � q, ν(u) � r, etc. and the images of the unwritten parts are zero.

Fix an order (x1 , ..., xk) and (y1 , ..., yl) that satisfies the definition of nonde-
generate product, and let {γi}mi�0 be the corresponding path. If γi � (a , b) and
γi+1 − γi � (1, 0), we are going to show that the following recursive formula holds:

f [X]
(

xa . . . xk
µa . . . µk

)
� f [X]

(
xa+1 . . . xk
µa+1 . . . µk

)
f [X]

(
xa xa+1
µa

µ − µa

)
. (4.33)

Analogously, if γi � (a , b) and γi+1 − γi � (0, 1),

f [Y]
(

yb . . . yl
νb . . . νl

)
� f [Y]

(
yb+1 . . . yl
νb+1 . . . νl

)
f [Y]

(
yb yb+1
νb ‖ν‖ − νb

)
. (4.34)

Suppose that γi � (a , b) and γi+1 − γi � (1, 0). Let

µ �

(
xa . . . xk
µa . . . µk

)
be a counting function in CX . By Definition 4.7-2 above, we know that µ has a
preimage under marginalization µ̃, whose support is such that (X. f [Y])(µ̃) � 1, cf.
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Lemma 4.3. Thus (4.31) becomes f [XY](µ̃) � f [X](X∗µ̃) � f [X](µ). Equation (4.30)
then reads

f [X]
(

xa+1 . . . xk
µa+1 . . . µk

)
f [Y]◦τ

(
yb yb+1µ − µa µa

)
� f [X]

(
xa . . . xk
µa . . . µk

)
, (4.35)

where τ is the identity or the transposition of the nontrivial arguments of µ. In any
case, setting µa+1 �

µ − µa and µa+2 � . . . � µk � 0, we conclude that

f [X]
(

xa xa+1
µa

µ − µa

)
� f [Y] ◦ τ

(
yb yb+1µ − µa µa

)
, (4.36)

which combined with (4.35) implies (4.33). The identity (4.34) can be obtained
analogously.

To determine

φa(n1 , n2) :� f [X]
(

xa xa+1
n1 n2

)
and ψb(n1 , n2) :� f [Y]

(
yb yb+1
n1 n2

)
,

for (n1 , n2) ∈ N2, consider the three different elements b1 , b2 , b3 in EXY ⊂ EX × EY
given by the property 1 of a nondegenerate product. The symmetric equation (4.32)
evaluated on ν1δb1 + ν2δb2 + ν3δb3 ∈ N gives the equation that appears in Proposition
4.4, which implies that φa(n1 , n2) � ψb(n1 , n2) �

{n1+n2
n1 ,n2

}
D

for certain admissible
sequence D (the eventual permutations of the arguments in the unknowns become
irrelevant, because the solution is symmetric).

When considering γi+1, one finds the functions φa and ψb+1, or the functions
φa+1 and ψb , since two consecutive matrices γi+1 − γi is either (1, 0) or (0, 1). This
ensures that the admissible sequence D that appears for each γi is always the same,
as proved in Lemma 4.9. The recurrence relations (4.33) and (4.34) then imply the
desired result. �

Lemma 4.9. Let D ,D′ be two admissible sequences. If for all n1 , n2 ∈ N2{
n1 + n2
n1 , n2

}
D
�

{
n1 + n2
n1 , n2

}
D′

(4.37)

then D � D′.

Proof. Just remark that {
n
1

}
D
�

{
n

1, n − 1

}
D
� [n]D! (4.38)

so we have [n]D! � [n]D′! for all n ∈ N, which clearly implies the result. �

As in the continuous case, the number of admissible sequences that appear in
the computation of the 1-cocycles Z1(S, G ) depends on the number of connected
components of S∗, that is S deprived of its final element: only the minimal elements
are important, and when they refine a common variable (different from 1) they must
share the admissible sequence D, as a consequence of Lemma 4.9. Cf. the proof of
Theorem 3.14.



Combinatorial information cohomology 105

On the other hand, a choice of 0-cochain g � g1[ ] : N∗ → R∗+ induces globally a
Fontené-Ward coefficient δg for a unique admissible sequence Dg . Explicitly,

δg[Y](ν) �
(Y.g[])(ν)

g[](ν) �

∏
y∈EY ,Y∗ν(y),0 g(

ν |y)
g(‖ν‖) . (4.39)

The coboundary δg is clearly trivial when g is the exponential function. In virtue of
the previous theorem, the expression (4.39), being a cocycle, must be a Fontené-Ward
coefficient, which gives the existence of Dg .

Therefore, Z1 and δC0 are both infinite dimensional. If S∗ is connected, the
quotient is trivial; otherwise it is infinite: |π0(S∗)| − 1 admissible sequences remain
arbitrary.

4.5 Asymptotic relation with probabilistic information
cohomology

Proposition 4.10. Let g be a combinatorial 1-cocycle. Suppose that, for every X ∈ Ob S,
there exists a measurable function f [X] : Π(X) → R with the following property: for every
sequence of counting functions {νn}n≥1 ⊂ CX such that

1. ‖νn ‖ → ∞, and
2. for every x ∈ EX , νn(x)/‖νn ‖ → p(x) as n →∞

the asymptotic formula

g[X](νn) � exp(‖νn ‖α f [X](p) + o(‖νn ‖α))

holds. Then f is a probabilistic 1-cocycle of type α, i.e. f ∈ Z1(S,Fα(Π)).

Proof. We must show that, whenever it makes sense,

f [XY](PXY) � (X. f [Y])(PXY) + f [X](X∗PXY).

Let {νn
XY}n≥1 be a sequence of counting functions such that

νn
XY

 → ∞ and, for
every z ∈ EXY , νn

XY(z)/
νn

XY

 → PXY(z). A sequence like this always exists: just
consider a rational approximation of the values of PXY with common denominator.

Since g is a 1-cocycle, g[XY] � (X.g[Y])g[X]. Evaluate it at νn
XY , take the loga-

rithm and divide by
νn

XY

α in order to obtain

ln g[XY](νn
XY)νn

XY

α �

∑
x∈EX

X∗νn
XY(x),0

ln g[Y](νn
XY |X�x)νn

XY

α +
ln g[X](νn

XY)νn
XY

α . (4.40)

Recall that, for any counting function ν, ‖ν |X�x ‖ � X∗ν(x). Hence,

ln g[Y](νn
XY |X�x)nn

XY

α �
ln g[Y](νn

XY |X�x)νn
XY |X�x

α (X∗νn
XY(x))αnn
XY

α . (4.41)

Plug this in (4.40) and take the limit as n goes to infinity to conclude. �

The proof applies almost unchanged to 0-cocycles and general n-cocycles.
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Proposition 4.11. Let g be a combinatorial n-cocycle. Suppose that, for every X1 , ...,Xn ∈
Ob S such that Xi · · ·Xn ∈ Ob S, there exists a measurable function

f [X1 |...|Xn] : Π(X1 · · · ,Xn) → R
with the following property: for every sequence of counting functions {νn}n≥1 ⊂ CX1···Xn

such that
1. ‖νn ‖ → ∞, and
2. for every z ∈ EX1···Xn , νn(z)/‖νn ‖ → p(z) as n →∞

the asymptotic formula

g[X1 |...|Xn](νn) � exp(‖νn ‖α f [X1 |...|Xn](p) + o(‖νn ‖α))
holds. Then f is a n-cocycle of type α, i.e. f ∈ Zn(S,Fα(Π)).

We discuss now some important examples:
1. The exponential Expk : ν → exp(k ‖ν‖) is the a combinatorial 0-cocycle, and it

corresponds to the constant k seen as a probabilistic 0-cocycle.
2. It is well known that(

n
p1n , ..., ps n

)
� exp(nS1(p1 , ..., ps) + o(n)) (4.42)

This can be easily proved by using Stirling’s approximation, for instance. This
asymptotic formula partly explains the relevance of entropy in Shannon’s com-
munication theory: it gives an asymptotic counting of typical sequences for
memoryless sources. This is the content of the Asymptotic Equipartition Prop-
erty (Proposition 0.4).

3. Whereas the previous examples are not really surprising, Proposition 4.10 hints
at new objects that are connected to the generalized α-entropies and have gone
unnoticed until now. For example, the q-multinomial coefficients are connected
asymptotically to the 2-entropy (quadratic entropy),[

n
p1n , ..., ps n

]
q
� exp(n2 ln q

2
S2(p1 , ..., ps) + o(n2)) (4.43)

These coefficients have a well-known combinatorial interpretation: when q is
a prime power and k1 , ..., ks are integers such that

∑s
i�1 ki � n, the coefficient[ n

k1 ,...,ks

]
q
counts the number of flags of vector spaces V1 ⊂ V2 ⊂ ... ⊂ Vn � Fn

q

such that dim Vi �
∑i

j�1 k j (here Fq denotes the finite field of order q). In
particular, the q-binomial coefficient

[n
k

]
q ≡

[ n
k ,n−k

]
q
counts vector subspaces of

dimension k in Fn
q .

In Part III, we push this parallel between S1 and S2 much further: we introduce
a probabilistic model that generates vector spaces and study its concentration
properties, to obtain a generalization of the Asymptotic Equipartition Property
that involves the quadratic entropy (Theorem 8.2).

It is quite natural to ask if, for any α > 0, there exists a sequence Dα � {Dα
i }i≥1

and K ∈ R such that{
n

p1n , ..., ps n

}
Dα

� exp(nαKSα(p1 , ..., ps) + o(nα)), (4.44)

and the answer turns out to be yes.
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Proposition 4.12. Consider any α ∈ R∗+ \ {1}. If Dα
n � exp{K(nα−1 − 1)}, for any K ∈ R,

then {
n

p1n , ..., ps n

}
Dα

� exp
{

nα
K
α

Sα(p1 , ..., ps) + o(nα)
}
.

Proof. Remark that [n]D! :� exp{K(∑n
i�1 iα−1 − n)}.

Suppose first that α > 1. In this case, x 7→ xα−1 is strictly increasing and∫ n

0
xα−1 dx �

nα

α
<

n∑
i�1

iα−1 <

∫ n+1

1
xα−1 dx �

(n + 1)
α
− 1
α
. (4.45)

Hence, if K > 0,

exp
{

K
(

nα

α
− n

)}
< [n]D! < exp

{
K

(
(n + 1)
α
− 1
α
− n

)}
. (4.46)

This directly implies that

[n]D!
[n1]D! · · · [ns]D!

< exp

{
K

(
(n + 1)α

α
− 1
α
− n −

s∑
i�1

(nαi
α
− ni

))}
< exp

{
K
α

(
nα

(
1 −

s∑
i�1

nαi
nα

)
+ o(nα)

)}
, (4.47)

as well as

[n]D!
[n1]D! · · · [ns]D!

> exp

{
K

(
nα

α
− n −

s∑
i�1

(
(ni + 1)α

α
− ni

))}
> exp

{
K
α

(
nα

(
1 −

s∑
i�1

nαi
nα

)
+ o(nα)

)}
. (4.48)

If K < 0, the inequalities (4.46), (4.47) and (4.48) must be reversed, but the result is the
same. Similarly, when 0 < α < 1 the argument remains valid making the necessary
modifications: all inequalities are reversed, since x 7→ xα−1 is strictly decreasing. �

It is not known if these or similar coefficients related to Sα, for α ∈ R∗+ \ {1, 2},
have a combinatorial or statistical interpretation.
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Chapter 5

A functional equation for
generalized entropies related to the
modular group

Fix α > 0. We are interested in the measurable solutions of

u(1 − x) + (1 − x)αu
( y

1 − x

)
� u(y) + (1 − y)αu

(
1 − x − y

1 − y

)
. (5.1)

for all x , y ∈ [0, 1) such that x + y ∈ [0, 1], subject to the boundary condition u(0) �
u(1) � 0.

In this chapter, we show that the only measurable solutions to (5.1) are multiples
of the corresponding entropy sα. This rests on two preliminary results.

Proposition 5.1 (Regularity). Any measurable solution of (5.1) is infinitely differentiable
on (0, 1).

Proposition 5.2 (Symmetry). Any solution of (5.1) satisfies u(x) � u(1 − x) for all
x ∈ Q ∩ [0, 1].

The first is proved analytically, by means of standard techniques in the field
of functional equations, and the second by a geometrical argument, relating the
equation to the action of the modular group on the projective line.

The propositions above imply that any measurable solution of (5.1) must satisfy
u(x) � u(1 − x) for all x ∈ [0, 1] and therefore

u(x) + (1 − x)αu
( y

1 − x

)
� u(y) + (1 − y)αu

(
x

1 − y

)
, (5.2)

with u(1) � u(0) � 0. By continuity, u attains a finite value on 1
2 , say K. For α � 1,

Kannappan and Ng [47] showed that u(x) � Ks1(x). For α , 1, Daróczy [25] proved
that1

u(x) � K
21−α − 1

(xα + (1 − x)α − 1). (5.3)

1In fact, he does the case K � 1, but the argument works in general.
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Proof of Proposition 5.1. Lemma 3 in [47] implies that u is locally bounded on (0, 1)
and hence locally integrable. Their proof is for α � 1, but the argument applies to
the general case with almost no modification, just replacing

|u(y)| �
����u(1 − x) + (1 − x)u

( y
1 − x

)
− (1 − y)u

(
1 − x − y

1 − y

)���� ≤ 3N,

where x , y are such that u(1 − x) ≤ N , u
( y

1−x

)
≤ N and u

(
1−x−y

1−y

)
≤ N , by

|u(y)| �
����u(1 − x) + (1 − x)αu

( y
1 − x

)
− (1 − y)αu

(
1 − x − y

1 − y

)���� ≤ 3N,

that is evidently valid too.
To prove the differentiability, we also follow the method of [47]. Let us fix an

arbitrary y0 ∈ (0, 1); then, it is possible to chose s , t ∈ (0, 1), s < t, such that

1 − y − s
1 − y

,
1 − y − t

1 − y
∈ (0, 1),

for all y in certain neighborhood of y0. We integrate (5.1) with respect to x, between
s and t, to obtain

(s − t)u(y) �
∫ 1−s

1−t
u(x)dx + y1+α

∫ y
1−t

y
1−s

u(z)
z3 dz + (1 − y)1+α

∫ 1−y−t
1−y

1−y−s
1−y

u(z)dz. (5.4)

The continuity of the RHS of (5.4) as a function of y at y0, implies that u is continuous
at y0 and therefore on (0, 1). The continuity of u in the RHS of (5.4) implies that u is
differentiable at y0. An iterated application of this argument shows that u is infinitely
differentiable on (0, 1). �

Proof of Proposition 5.2. We take 1 − x � 1 − y � z ∈
[ 1

2 , 1
]
in (5.1), to obtain

u(z) − u(1 − z) � zα
[
u(2 − z−1) − u(z−1 − 1)

]
.

If we define h(z) :� u(z) − u(1 − z), the previous equation reads

∀z ∈
[

1
2
, 1

]
, h(z) � zαh(2 − z−1), (5.5)

and the definition directly implies that

∀z ∈ [0, 1] , h(z) � −h(1 − z). (5.6)

The boundary conditions are h(0) � h(1) � 0. From (5.5), we deduce that h(1/2) �
h(0)/2α � 0. Using (5.6) to modify the right hand side of (5.5), we obtain

∀x ∈
[

1
2
, 1

]
, h(x) � −xαh(x−1 − 1). (5.7)

In principle h is just defined on [0, 1], but we extend it imposing periodicity:

∀x ∈] − ∞,∞[, h(x + 1) � h(x) (5.8)

We establish now several results about this extended function.
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Lemma 5.3.
∀x ∈ R, h(x) � −h(1 − x).

Proof. We write x � [x] + {x}, where {x} :� x − [x]. Then,

h(x) (5.8)
� h({x}) (5.6)

� −h(1 − {x}) (5.8)
� −h(1 − {x} − [x]) � −h(1 − x).

�

Lemma 5.4.
∀x ∈ [1, 2], h(x) � xαh(2 − x−1). (5.9)

Proof. For h is periodic, (5.9) is equivalent to ∀x ∈ [1, 2], h(x − 1) � xαh(1− x−1), and
the change of variables u � x − 1 gives

∀u ∈ [0, 1], h(u) � (u + 1)αh
( u

u + 1

)
. (5.10)

Note that 1 − u
u+1 �

1
u+1 ∈ [1/2, 1]whenever u ∈ [0, 1]. Therefore,

h
( u

u + 1

)
(Lemma 5.3)

� −h
(

1
u + 1

)
(5.7)
�

(
1

u + 1

)α
h(u).

This establishes (5.10). �

Lemma 5.5.
∀x ∈ [2,∞[, h(x) � xαh(2 − x−1). (5.11)

Proof. If x ∈ [2,∞[, then 1 − 1
x ∈

[ 1
2 , 1

]
and we can apply equation (5.5) to obtain

h
(
1 − 1

x

)
(5.5)
�

(
1 − 1

x

)α
h

(
2 −

(
1 − 1

x

)−1
)
�

(
x − 1

x

)α
h
(
1 − 1

x − 1

)
. (5.12)

We prove (5.11) by recurrence. The case x ∈ [1, 2] corresponds to Lemma 5.4.
Suppose it is valid on [n − 1, n], for certain n ≥ 2; for x ∈ [n , n + 1],

h(x) (5.8)
� h(x − 1) (rec.)

� (x − 1)αh(2 − (x − 1)−1) (5.8)
� (x − 1)αh(1 − (x − 1)−1)

(5.12)
� xαh(1 − x−1) (5.8)

� xαh(1 − x−1).

�

Lemma 5.6.

∀x ∈
[
0, 1

2

]
, h(x) � −xαh(x−1 − 1). (5.13)
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Proof. The previous lemma and periodicity imply that h(x − 1) � xαh(1− x−1) for all
x ≥ 2, i.e.

∀u ≥ 1, h(u) � (u + 1)αh
(
1 − 1

u + 1

)
. (5.14)

Then, for u ≥ 1,

h
(

1
u + 1

)
(Lem. 5.3)
� −h

(
1 − 1

u + 1

)
(5.14)
� −

(
1

u + 1

)α
h(u). (5.15)

We set y � (u + 1)−1 ∈
(
0, 1

2
]
. Equation (5.15) reads

∀y ∈
(
0, 1

2

]
, h(y) � −yαh(y−1 − 1). (5.16)

Since h(0) � 0, the lemma is proved. �

Lemma 5.7.

∀x ∈
[
0, 1

2

]
, h(x) � xαh(2 − x−1). (5.17)

Proof. By Lemma 5.3, h
(
2 − x−1) � −h(x−1 − 1). Thus,

∀x ∈
[
0, 1

2

]
, h(x) (5.13)

� −xαh
(

1
x
− 1

)
� xαh

(
2 − 1

x

)
.

�

Lemma 5.8.
∀x ∈] − ∞, 0], h(x) � −xαh(2 − x−1).

Proof. On the one hand, periodicity implies that h(x) � h(x + 1) (Lem. 5.3)
� −h(1 − (x +

1)) � −h(−x). On the other, for x ≤ 0, the previous lemmas imply that h(−x) �
(−x)αh(2 − (−x)−1) � |x |αh(2 − (−x)−1). Therefore,

h(x) � −h(−x) � −|x |αh
(
2 +

1
x

)
(Lem. 5.3)
� |x |αh

(
1 −

(
2 +

1
x

))
(5.8)
� |x |αh

(
2 − 1

x

)
(5.18)

�

All these results can be summarized as follows:

Proposition 5.9. The function h, extended periodically to R, satisfies the equations

∀x ∈ R, h(x) � |x |αh
(

2x − 1
x

)
, (5.19)

∀x ∈ R, h(x) � −|x |αh
(

1 − x
x

)
. (5.20)
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Equation (5.20) is deduced from (5.19) using (5.6).
The group G � SL2(Z)/{±I} is called themodular group; it is the image of SL2(Z)

in PGL2(R). We keep using the matrix notation for the images in this quotient. We

make G act on P1(R) as follows: an element g �

(
a b
c d

)
∈ G acting on [x : y] ∈ P1(R)

(homogeneous coordinates) gives

g[x : y] � [ax + b y : cx + dy].

Let S and T be the elements of G defined by the matrices

S �

(
0 −1
1 0

)
and T �

(
1 1
0 1

)
. (5.21)

The group G is generated by S and T [77, Ch. VII, Th. 2]; in fact, one can prove that
〈S, T; S2 , (ST)3〉 is a presentation of G.

The transformations x 7→ 2x−1
x and x 7→ 1−x

x in Equations (5.19) and (5.20) are
homographies of the real projective line P1(R), that we denote respectively α and β.
They correspond to elements

A �

(
2 −1
1 0

)
, B �

(
−1 1
1 0

)
. (5.22)

in G, that satisfy

B2
�

(
2 −1
−1 1

)
, BA−1

�

(
−1 1
0 1

)
. (5.23)

This last matrix corresponds to x 7→ 1 − x.

Lemma 5.10. The matrices A and B2 generate G.

Proof. Let

P � S−1T−1
�

(
0 1
−1 1

)
.

One has

PAP−1
�

(
1 −1
0 1

)
, (5.24)

and

PB2P−1
�

(
3 −1
1 0

)
. (5.25)

Therefore, PAP−1 � T−1 and S � T−3PB−2P−1. Inverting these relations, we obtain

T � PA−1P−1; S � PA3B−2P−1. (5.26)

Let X be an arbitrary element of G. Since Y � PXP−1 ∈ G and G is generated by S
and T, the element Y is a word in S and T. In consequence, X is a word in P−1SP
and P−1TP, which in turn are words A and B2. The Lemma is proved.
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One can find explicit formulas for S and T in terms of A and B2. Since P � S−1T−1,
we deduce that PSP−1 � S−1T−1STS and PTP−1 � S−1T−1TTS � S−1TS. Hence, in
virtue of (5.26),

S � P−1S−1T−1STSP

� (P−1S−1P)(P−1T−1P)(P−1SP)(P−1TP)(P−1SP)
� B2AB−2A2B−2

and

T � P−1S−1TSP

� (P−1S−1P)(P−1TP)(P−1SP)
� B2A−1B−2.

�

To finish our proof of Proposition 5.2, we remark that the orbit of 0 by the action of
G on P1(R) isQ∪{∞}, whereQ∪{∞} has been identifiedwith {[p : q] ∈ P1(R) | p , q ∈
Z} ⊂ P1(R). This is a consequence of Bezout’s identity: for every point [p : q] ∈ P1(R)
representing a reduced fraction p

q , 0 (p , q ∈ Z \ {0} and coprime), there are two
integers x , y such that xq − yp � 1. Therefore

g′ �
(
x p
y q

)
is an element of G and g′[0 : 1] � [p : q]. The case q � 0 is covered by(

0 1
−1 0

)
[0 : 1] � [1 : 0].

The extended equations (5.19) and (5.20) are such that h(x) � 0 implies h(αx) � 0,
h(βx) � 0, h(α−1x) � 0 and h(β−1x) � 0. Since the orbit in R of 0 by the group of
homographies generated by A and B2 (i.e. G itself) contains the whole set of rational
numbers Q and h(0) � 0, we conclude that h � 0 on [0, 1] ∩Q. �
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Chapter 6

The q-multinomial coefficients

This chapter introduces the combinatorial objects and results used later in Chapters 7
and 8. In Section 6.1, we define the q-multinomial coefficients, that are associated to
the enumeration of flags of finite vector spaces. Section 6.2 studies their asymptotic
behavior and establishes the connection with the quadratic entropy. Sections 6.3 and
6.4 are mutually independent and not essential to understand the rest of the paper:
the former uses the asymptotic results to obtain a combinatorial explanation for the
nonadditivity of Tsallis 2-entropy, and the later discuss a combinatorial justification
of the maximum entropy principle with Tsallis entropy.

6.1 Definition

Let q be an indeterminate. The q-integers {[n]q}n∈N are defined by [n]q :� (qn −
1)/(q − 1) and the q-factorials by [n]q! :� [n]q[n − 1]q · · · [1]q . The q-multinomial
coefficients are [

n
k1 , ..., ks

]
q

:�
[n]q!

[k1]q! · · · [ks]q!
. (6.1)

defined for (n , k1 , ..., ks) ∈ Ns+1 such that
∑s

i�1 ki � n.
Throughout this paper, we shall assume that q is a fixed prime power. For such

q, the q-binomial coefficient
[n

k

]
q ≡

[ n
k ,n−k

]
q
counts the number of k-dimensional

subspaces in Fn
q . More generally, given a set of integers k1 , ..., ks such that

∑s
i�1 ki � n,

the q-multinomial coefficient
[ n

k1 ,...,ks

]
q
equals the number of flags V1 ⊂ V2 ⊂ · · · ⊂

Vs−1 ⊂ Vs � Fn
q of vector spaces such that dim Vj �

∑ j
i�1 ki , see [68, 69]. We will say

that these flags are of type (k1 , ..., ks).
It is possible to introduce a function Γq as the normalized solution of a functional

equation that guaranties that [n]q! � Γq(n + 1), see [6]. When q > 1 and x > 0, this
function is given by the formula [64]:

Γq(x) � (q−1; q−1)∞q(x2)(q − 1)1−x
∞∑

n�0

q−nx

(q−1; q−1)n
(6.2)

�
(q−1; q−1)∞q(x2)(q − 1)1−x

(q−x ; q−1)∞
, (6.3)
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where we have used the Pochhammer symbol

(a; x)n :�
n−1∏
k�0

(1 − axk), (a; x)0 � 1. (6.4)

The equivalent expressions for the Γq-function come from the identity

(ax; q)∞
(x; q)∞

�

∞∑
n�0

(a; q)n
(q; q)n

xn (|q | < 1), (6.5)

known as q-binomial theorem [45, p. 30].
Recall [50, p. 92] that an infinite product

∏∞
i�0 ui is said to be convergent if

1. there exists i0 such that ui , 0 for all i > i0;
2. limn→∞ ui0+1 · · · ui0+n exists and is different from zero.

An infinite product in the form
∏(1 + ci) is said to be absolutely convergent when∏(1+ |ci |) converges. One can show that absolute convergence implies convergence.

Moreover, when the terms γi ≥ 0, the product
∏

i(1 + γi) is convergent if and only
if the series

∑
i γi converges. The convergence of

∑
i 1/q i gives then the following

result, that is used without further comment throughout the thesis.

Lemma6.1. For every a ∈ C, the product (a; q−1)∞ converges. Moreover, if a < { q i | i ≥ 0 },
then (a; q−1)∞ , 0.

The Γq function gives an alternative expression for the q-multinomial coefficients[
n

k1 , ..., ks

]
q
�

Γq(n + 1)
Γq(k1 + 1) · · · Γq(ks + 1) , (6.6)

which in turn extends its definition to complex arguments.
We close this subsection with a remark on the unimodality of the q-binomial

coefficients.

Lemma 6.2. For every n ∈ N,
•

[n
0
]

q <
[n

1
]

q < . . . <
[ n
bn/2c

]
q
,

•
[ n
bn/2c

]
q
�

[ n
dn/2e

]
q
,

•
[ n
dn/2e

]
q
> . . .

[ n
n−1

]
q >

[n
n

]
q .

Proof. Consider the quotient

Q(n , k) :�

[ n
k+1

]
q[n

k

]
q

�
[n − k]q
[k + 1]q

. (6.7)

Then, Q(n , k) ≥ 1 iff qn−k ≥ qk+1 iff k ≤ n−1
2 , with equality just in the case k �

n
2 − 1

2 �

bn/2c (when n is odd). �
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6.2 Asymptotic behavior

The quadratic entropy S2 of a probability law (µ1 , ..., µs) is defined by1

S2(µ1 , · · · , µs) :� 1 −
s∑

i�1
µ2

i . (6.8)

We also use the notation 2(x), for x ∈ [0, 1], as a shortcut for S2(x , 1 − x).
Theorem 6.3. For each n ∈ N, let {ki(n)}si�1 be a set of positive real numbers such that∑s

i�0 ki � n (we write ki when n is clear from context). Suppose that, for each i ∈ {1, ..., s},
it is verified that ki(n) → li ∈ [0,∞] as n →∞. Then,[

n
k1 , ..., ks

]
q
∼ (q−1; q−1)1−s

∞

s∏
i�1
(q−(li+1); q−1)∞qn2S2(

k1
n ,...,

ks
n )/2. (6.9)

Recall that fn ∼ gn means fn/gn → 1 as n →∞. By convention, (q−(∞+1); q−1)∞ �

1.

Proof. First, we substitute (6.2) in (6.6) (the powers of (q − 1) cancel):[
n

k1 , ..., ks

]
q
� (q−1; q−1)1−s

∞ qn2S2(
k1
n ,...,

ks
n )/2

∏s
i�1(q−(ki+1); q−1)∞
(q−(n+1); q−1)∞

. (6.10)

Theorem 6.3 is a direct consequence of this equality and the following fact: for any
sequence {tn}n of positive numbers,

lim
n→∞
(q−(tn+1); q−1)∞ � 1 (6.11)

if tn →∞, and
lim

n→∞
(q−(tn+1); q−1)∞ � (q−(t+1); q−1)∞ (6.12)

if tn → t ∈ [0,∞).
To establish (6.11) and (6.12), remark first that

(q−(tn+1); q−1)∞ �

∞∑
j�0

q− j(tn+1)

(q−1; q−1) j

can be written as
∫
N

fn(x)ν(dx), where ν denotes the counting measure and fn : N→
[0,∞) is given by

fn(x) �
q−x(tn+1)

(q−1; q−1)x
(6.13)

Moreover, | fn(x)| ≤ g(x) :� q−x/(q−1; q−1)x , because tn ≥ 0, and g(x) is integrable,∫
N

g(x)ν(dx) ≤ (q−1 , q−1)−1
∞

1
1−q−1 . Therefore, in virtue of Lebesgue’s dominated con-

vergence theorem,

lim
n→∞

∞∑
j�0

q− j(tn+1)

(q−1; q−1) j
� lim

n

∫
N

fn(x)ν(dx)

�

∫
N

lim
n

fn(x)ν(dx)

1In this part of the thesis, we fix the constant 1 in front of 1 −∑s
i�1 µ

2
i .
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The point-wise limit limn fn(x) is [x � 0]when tn →∞ and q−x(t+1)

(q−1;q−1)x when tn → t. �

When fn and gn are positive, fn ∼ gn implies that limn logq fn − logq gn � 0. For
instance, we can deduce that, for any fixed ∆ ∈ N,

lim
n

1
n

logq

[
n

n − ∆

]
q
� lim

n

n
2

S2(∆/n) � ∆, (6.14)

where the last equality comes from a direct computation.
As an immediate application of Theorem 6.3, we obtain the following limit an-

nounced in the Introduction.

Proposition 6.4. For each n ∈ N, let {ki(n)}si�1 be a set of positive real numbers such that∑s
i�0 ki � n (we write ki when n is clear from context). Suppose that ki/n → µi ∈ [0, 1] as

n →∞, for all i. Then

lim
n→∞

2
n2 logq

[
n

k1 , ...., ks

]
q
� S2(µ1 , · · · , µs). (6.15)

Proof. If f /g → 1, then logq( f /g) → 0. Therefore,

logq

[
n

k1 , ..., ks

]
q
− logq

( (q−1; q−1)1−s
∞∏s

i�1(q−(li+1); q−1)∞

)
− n2

2
S2

(
k1
n
, ...,

ks

n

)
� o(1). (6.16)

Multiply this by 2/n2 and use the continuity of S2 to conclude. �

6.3 Combinatorial explanation for nonadditivity of Tsallis
2-entropy

Additivity corresponds to the following property of Shannon entropy: if X is an
EX-valued random variable with law P � {px}x∈EX and Y an EY-valued variable
with law Q � {qy}y∈EY , independent of X, then the joint variable (X,Y) has law
P ⊗ Q :� {px qy}(x ,y)∈EX×EY and

S1[(X,Y)](P ⊗ Q) � S1[X](P) + S1[Y](Q). (6.17)

For simplicity (the arguments work in general), we suppose that X, Y are binary
variables, i.e. EX � EY � {0, 1}. Consider the sequences counted by

( N
N00 ,N01 ,N10 ,N11

)
;

they are the possible results of N independent trials of the variable (X,Y), under
the assumption that the result (i , j) is obtained Ni j times, for each (i , j) ∈ {0, 1}2.
We treat the particular case Ni j � pi q j N , that correspond to the expected number
of appearances of (i , j). The independence between Y and X means that, given
N0 :� N00+N01 � p0N occurrences ofX � 0 (resp. N1 :� N10+N11 � p1N occurrences
of X � 1) in the sequences of length N counted above, there are q0Ni occurrences
of Y � 0 and q1Ni occurrences of Y � 1 in the corresponding subsequence defined
by the condition X � i, irrespective of the value of i. In this case, the multiplicative
recurrence relation g[XY] � (X.g[Y])g[X] reads(

N
N00 ,N01 ,N10 ,N11

)
�

(
N
N0

) (
N0

q0N0

) (
N1

q0N1

)
. (6.18)
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q0

q1
p0

q0

q1

p1

Figure 6.1: Decision tree for the recursive reasoning that leads to equations (6.18) and (6.19).

Applying 1
N ln(−) to both sides and taking the limit N →∞, we recover (6.17).

In the q-case,
[ N

N00 ,N01 ,N10 ,N11

]
q
counts the number of flags V00 ⊂ V01 ⊂ V10 ⊂ V11 �

Fn
q of type (N00 ,N01 ,N10 ,N11). When Ni j � pi q j N , such a flag can be determined by

an iterated choice of subspaces, whose dimensions are chosen independently: pick
first a subspace V0 ⊂ Fn

q of dimension N0 � N00 + N01 � p0N (there are
( N
N0

)
q
of

those) and then pick a subspace of dimension q0N0 ⊂ V0 and another subspace of
dimension q0N1 in Fn

q /V0. This corresponds to the combinatorial identity[
N

N00 ,N01 ,N10 ,N11

]
q
�

[
N
N0

]
q

[
N0

q0N0

]
q

[
N1

q0N1

]
q
. (6.19)

Applying 2
N2 logq(−) to both sides and taking the limit N →∞, we obtain

S2(p0q0 , p0q1 , p1q0 , p1q1) � S2(p0 , p1) + p2
0S2(q0 , q1) + (1 − p0)2S2(q0 , q1)

� S2(p0 , p1) + S2(q0 , q1) − S2(p0 , p1)S2(q0 , q1).

In both cases, the trees that represent the iterated counting are the same, see Fig. 6.1
(and compare this with Figure 6 in Shannon’s paper [78]). The main difference lies in
the exponential growth of the combinatorial quantity of interest and how the corre-
spondent exponents are combined. In the q-case, even if you choose the dimensions
in two independent steps, the exponents do not simply add; in fact, the counting
of sequences is nongeneric in this respect. Remark also that the interpretation of
probabilities as relative frequencies of symbols only make sense for the case of words;
more generally they correspond to ratios or relative proportions.

6.4 Maximum entropy principle
In the simplest models of statistical mechanics, one assumes that the system is com-
posed of n particles, each one in certain state from a finite set S � {s1 , ..., sm} (in
certain contexts, the elements of S are called spins). A configuration of the system
is a feasible vector x ∈ Sn ; when all particles are independent, Sn is the sets of all
configurations.

We have in mind a new type of statistical mechanics, where a configuration of the
n particle system is represented by a flag of vector spaces V1 ⊂ V2 ⊂ ... ⊂ Vm � Fn

q .
In the classical case of independent particles, the total energy of a configuration

x just depends on its type (ki)1≤i≤m , where ki is the number of appearances of the
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symbol si in x. In fact, the mean (internal) energy is
∑m

i�1
ki
n Ei , where Ei ∈ R is the

energy associated to the spin si . Setting Ei+1 � 0, Ẽi � Ei − Ei+1 and ri �
∑i

j�1 k j , one
can write

∑m
i�1

ri
n Ẽi instead of

∑m
i�1

ki
n Ei .

Nowwe plan to move beyond independence, so it is convenient to see the energy
as a “global” function that depends on the type of the sequence. We assume now
that the energy associated to a flag of vector spaces V1 ⊂ V2 ⊂ ... ⊂ Vm � Fn

q just
depends on its type (k1 , ..., km) and is of the form

m∑
i�1

ki

n
Ei �

m∑
i�1

ri

n
Ẽi �

m∑
i�1

(dim Vi)
n

Ẽi (6.20)

where ri �
∑i

j�1 k j , as before.
In general, if n > 1, the equations

n∑
i�1

ki

n
Ei � 〈E〉 (6.21)

n∑
i�1

ki � n , (6.22)

where 〈E〉 ∈ R is a prescribed mean energy, do not suffice to determine the type
(k1 , ..., km) and an additional principle must be introduced to select the “best” es-
timate. As a solution to this inference problem, we propose an extension of the
principle of maximum entropy as stated by Jaynes in [42]. Between all the types that
satisfy (6.21) and (6.22), we should select the one that corresponds to the greatest
number of configurations of the system. This means that we must maximize

W(k1 , ..., km) :�
[

n
k1 , k2 , ..., km

]
q

(6.23)

under the constraints (6.21) and (6.22). The maximization of W(k1 , ..., km) is equiv-
alent to the maximization of 2 logq W(k1 , ..., km)/n2; as n → ∞, the latter quantity
approaches S2(g1 , ..., gm), with gi :� limn ki/n. Our maximum 2-entropy principle
says that the best estimate to (g1 , ..., gm) corresponds to the solution to the following
problem

max S2(g1 , ..., gm)

subject to
m∑

i�1
giE j � 〈E〉

m∑
i�1

gi � 1.

This differs from usual presentations of the maximum entropy principle in the lit-
erature concerning nonextensive statistical mechanics. Usually the constraints are
written in terms of escort distributions derived from (g1 , ..., gm); these have proven
useful in several domains, e.g. the analysis of multifractals [11, 85]. However, it is
not clear for us how to derive them from combinatorial facts.



Chapter 7

Grassmannian process

When q-is a prime power, the q-binomial coefficients count vector spaces. As ex-
plained in the Introduction, this motivates a generalization of information theory
where messages are vector spaces in correspondence with the usual information the-
ory for memoryless Bernoulli sources. Table 1 outline the correspondence. Sections
7.1 and 7.3 justify the last row of this table: the former describes the q-deformed ver-
sion of the binomial distribution, associated to the q-binomial coefficients; the latter
introduces an original stochastic model for the generation of generalized messages:
a discrete-time stochastic process that gives at time n a vector subspace of Fn

q , that
we call Grassmannian process. Finally, Section 7.4 establishes some facts about the
asymptotic behavior of this process.

7.1 The q-binomial distribution

Let Z be a random variable that takes the value 1 with probability ξ ∈ [0, 1] and the
value 0 with probability 1 − ξ (Bernoulli distribution). Its characteristic function is

E(eitZ) � ξeit
+ (1 − ξ). (7.1)

Let Wn be a random variable with values in {0, ..., n}, such that k has probability
Bin(k |n , ξ) :�

(n
k

)
ξk(1 − ξ)n−k , where ξ ∈ [0, 1]. The binomial theorem implies that

Bin(·|n , ξ) is a probability mass function, corresponding to the so-called binomial
distribution. The theorem also implies that(

E
(
eitZ

))n
� (ξeit

+ (1 − ξ))n

�

n∑
k�0

(
n
k

)
eitkξk(1 − ξ)n−k

� E
(
eitWn

)
,

(7.2)

which means that Wn � Z1 + ... + Zn (in law), where Z1 , ..., Zn are n i.i.d. variables
with the same distribution than Z [26, Ch. I, Sec. 11]. Given a collection {Zi}i≥1
of i.i.d. random variables such that Zi ∼ Ber(ξ), the process {Wn}n≥1 defined by
W1 � Z1 and Wn � Wn−1 + Zn when n > 1 is an N-valued markovian stochastic
process.
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There is a well known combinatorial interpretation for all this: if one generates
binary sequences of length n by tossing n times a coin that gives 1 with probability
ξ and 0 with probability 1 − ξ, any sequence with exactly k ones has probability
ξk(1 − ξ)n−k and there are

(n
k

)
of them. Therefore, if Y is the sum of the outputs

of all the coins (the number of ones in the generated sequence), the probability of
observing Y � k is

(n
k

)
ξk(1 − ξ)n−k .

There is also a q-binomial theorem, known as the Gauss binomial formula [45,
Ch. 5]:

(x + y)(x + yq) · · · (x + yqn−1) �
n∑

k�0

[
n
k

]
q
q(k2)yk xn−k . (7.3)

Let us write (x+ y)nq instead of (x+ y)(x+ yq) · · · (x+ yqn−1): the q-analog of (x+ y)n .
Then (7.3) implies that

Binq(k |n , x , y) :�
[
n
k

]
q

q(k2)yk xn−k

(x + y)nq
(7.4)

is a probability mass function for k ∈ {0, ..., n}, with parameters n ∈ N, x ≥ 0 and
y ≥ 0. Moreover, the factorization

n−1∏
j�0

(x + yeit q j)
(x + yq j)

�

n∑
k�0

[
n
k

]
q

eitk yk xn−k q(k2)
(x + y)nq

(7.5)

shows that a variable Yn with law Binq(n , x , y) can be written as the sum of n
independent variables X1 , ...,Xn , such that Xi takes the value 0 or 1 with probability
x/(x + yq i−1) and yq i−1/(x + yq i−1), respectively.

If we begin with a collection {Xi}i≥1 of independent variables such that Xi ∼
Ber

(
yq i−1

x+yq i−1

)
, then the process {Yn}n≥1 defined by Yn � X1 + · · ·Xn is an N-valued

markovian stochastic process. When q → 1, each Xi becomes a Bernoulli variable
with parameter y/(x + y) and Y has a Bin(n , y

x+y ) distribution. Equation (7.5) also
implies that

E(Y) �
n−1∑
j�0

yq j

x + yq j � n −
n−1∑
j�0

x
x + yq j . (7.6)

Provided that x , 0, one can write the mass function of the q-binomial as follows:

Binq(k |n , θ) :�
[
n
k

]
q

q(k2)θk

(−θ; q)n
, (7.7)

where θ � y/x ≥ 0. We adopt here the classical notation, the q-Pochhammer symbol
(−θ; q)n , instead of (1 + θ)nq , cf. Section 6.1.1 Strictly speaking, this is the q-binomial
distribution found in the literature [48]. The expectation and the variance of this

1The notation can be misleading, because the terms 1 and θ do not commute inside (1 + θ)nq .
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simplified distribution are respectively

E(Y) �
n−1∑
j�0

θq j

1 + θq j � n −
n−1∑
j�0

1
1 + θq j , (7.8)

V(Y) �
n−1∑
j�0

θq j

(1 + θq j)2
. (7.9)

Set cn(θ) :�
∑n−1

j�0
1

1+θq j ; this sequence is monotonic in n and convergent to certain
c(θ). We do not include q in the notation, since it is fixed from the beginning.

7.2 Parameter estimation by the maximum likelihood
method

Let us suppose we make n independent trials of a variable Y with distribution
Binq(n , θ), obtaining results y1 , ..., ym . The probability of this outcome is

P(y1 , ..., ym |θ) �
m∏

i�1

[
n
yi

]
q

θyi q yi(yi−1)/2

(−θ; q)n
. (7.10)

This implies that

∂ log P
∂θ

�
1
θ

©«
n∑

i�1
yi − m

n−1∑
j�0

θq j

(1 + θq j)
ª®¬ . (7.11)

By the maximum likelihoodmethod, the best estimate for θ, say θ̂, should maximize
P and therefore satisfy ∂ log P

∂θ

���
θ�θ̂

� 0; in turn, this equation implies that the empirical
mean

ȳ :� 1
m

m∑
i�1

yi (7.12)

should coincide with the theoretical mean

mq ,n(θ) :�
n−1∑
j�0

θq j

1 + θq j . (7.13)

Proposition 7.1. The map θ 7→ mq ,n(θ) establishes a bĳection between [0,∞) and [0, n).

If this correspondence is extended by mq ,n(∞) � n—which corresponds to the
case x � 0—the value of θ̂ is uniquely determined by the equation mq ,n(θ̂) � ȳ.

Proof. Since
d

dθ

(
θq j

1 + θq j

)
�

q j

(1 + θq j)2
> 0, (7.14)

mq ,n(θ) is strictly increasing. Moreover, mq ,n(0) � 0 and limθ→∞ mq ,n(θ) � n. �



126 A vector-space-valued stochastic process associated to the q-binomial distribution

7.3 A vector-space-valued stochastic process associated to
the q-binomial distribution

Thevector (Z1 , ..., Zn) is a randombinary sequence, but its q-deformation (X1 , ...,Xn),
obtained in the previous section, cannot be identified in an obviouswaywith a vector
space. This motivates the introduction of an associated stochastic process {Vi}i∈N
such that, for each n ∈ N, Vn is vector subspace of Fn

q and the law of {Xi}i∈N∗ can be
recovered from that of {Vi}i∈N.

Let Gr(k , n) be the set of k-dimensional vector subspaces of Fn
q and define the

total n-th Grassmannian by

Gr(n) :�
n⋃

i�0
Gr(i , n). (7.15)

Let 〈0〉 � F0
q ↪→ F1

q ↪→ F2
q ↪→ .... ↪→ Fn

q ↪→ ... be a sequence of linear embeddings;
note that it induces embeddings at the level of Grassmannians, that will be implicit
in what follows. The (n + 1)-dilationsdilation of w are

Diln+1(w) :� { v ∈ Gr(n + 1) | w ⊂ v , v 1 Fn
q , dim v − dim w � 1 }. (7.16)

Definition 7.2 (Grassmannian process). Define V0 :� F0
q , the trivial vector space; for

each n ≥ 0, let Vn+1 be a random variable taking values in Gr(n +1)with law defined
by2

P (Vn+1 � v |Vn � w ,Xn+1 � 0) � δw(v), (7.17)

P (Vn+1 � v |Vn � w ,Xn+1 � 1) � [v ∈ Diln+1(w)]
|Diln+1(w)|

. (7.18)

We refer to {Vn}n∈N as theGrassmannianprocess associated to the q-binomial process
{Xi}i∈N∗ .

Proposition 7.3. Let v be a subspace of Fn
q such that dim(v) � k. Then,

P (Vn � v) �
θk qk(k−1)/2

(−θ; q)n
. (7.19)

Proof. To shorten notation, we write in this section PX (x) instead of P (X � x), and
PX |Y

(
x |y

)
instead of P

(
X � x |Y � y

)
.

Our proof is by recurrence. The case n � 1 is straightforward; for instance,

PV1 (〈0〉) � PV1 |V0 (〈0〉|〈0〉)
� PV1 |V0 ,X1 (〈0〉|〈0〉, 0)PX1 (0) ,
� PX1 (0)

because 〈0〉 it is not a dilation of itself.

2We use Iversen’s convention for the characteristic function: [p] � 1 if p is true, and vanishes
otherwise.
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Suppose the formula is valid up to n ≥ 1. Let v be a subspace of Fn+1
q of dimension

k. When v is contained in Fn
q ,

PVn+1 (v) � PVn+1 |Vn ,Xn+1 (v |v , 0)PXn+1 (0)PVn (v)

� 1 · 1
1 + θqn

θk qk(k−1)/2

(−θ; q)n
�
θk qk(k−1)/2

(−θ; q)n+1
.

If v 1 Fn
q ,

PVn+1 (v) �
∑

w∈Gr(n)
PVn+1 |Vn ,Xn+1 (v |w , 1)PYn (w)PXn+1 (1)

�

∑
w∈Gr(k−1,n)

w$V

1
|Diln+1(w)|

(
θk−1q(k−1

2 )
(−θ; q)n

)
θqn

(1 + θqn)

�
θk q(k−1

2 )qn

|Diln+1(v ∩ Fn
q )|(−θ; q)n+1

.

The formula dim U + dim V � dim(U + V) + dim(U ∩ V) entails that v ∩ Fn
q has

dimension k − 1. Any w ∈ Gr(k − 1, n) such that w ⊂ v must be contained in v ∩ Fn
q

and have the same dimension, implying that w � v∩Fn
q ; this explain the last equality

above.
Finally, let w be a k − 1 dimensional subspace in Fn

q ; to dilate it into a v ∈
Gr(k , n + 1) \ Gr(k , n), one must pick a vector x outside Fn

q : there are qn+1 − qn of
those. However, since w+ 〈x〉 has qk points and w just qk−1, there are qk−qk−1 choices
of x that give the same dilation v. Therefore, the number of different dilations is

qn+1 − qn

qk − qk−1 � qn−(k−1). (7.20)

i.e. |Diln+1(v ∩ Fn
q )| equals qn−(k−1). �

Corollary 7.4.

P (dim Vn � k) �
[
n
k

]
q

θk qk(k−1)/2

(−θ; q)n
. (7.21)

Proof. This is a consequence of Proposition 7.3 and the fact that
[n

k

]
q counts the

number of k dimensional subspaces of Fn
q . �

Proposition 7.5. Let {Yn}n∈N∗ denote a q-binomial process, Yn ∼ Binq(n , θ), and {Vn}n∈N
its associated Grassmannian process. Let v be a subspace of Fn

q of dimension k � n − d, for
d ∈ J0, nK. Then,

P (Vn � v) �
q−

1
2 (d−( 12−logq θ))2+ 1

2 ( 12−logq θ)2− n2
2 S2(d/n)

(−θ−1; q−1)n
. (7.22)
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Proof. We shall rewrite the various factors in (7.19). In the first place,

(−θ; q)n �

n−1∏
i�0

θq i(1 +
1
θq i ) � θ

n qn(n−1)/2(−θ−1; q−1)n . (7.23)

Note also that n2S2(d/n) � n2 − k2 − d2, which implies

q(k2) � qk2/2q−k/2
� q(n

2−n2S2(d/n)−d2)/2q(d−n)/2. (7.24)

Finally, θk � θn−d . Replace all this in (7.19) and simplify to obtain

P (Vn � v) �
q−

d2
2 +d( 12−logq θ)q−

n2
2 S2(d/n)

(−θ−1; q−1)n
. (7.25)

Complete the square in the exponent to conclude. �

7.4 Asymptotics

Let us define a function µ : N→ (0,∞) by

µ(d) :�
q−

1
2 (d−( 12−logq θ))2+ 1

2 ( 12−logq θ)2(q−(d+1); q−1)∞
(q−1; q−1)∞(−θ−1; q−1)∞

, (7.26)

and introduce the notation µ(Ja , bK) :�
∑

d∈Ja ,bK µ(d).3
The asymptotic formula in Theorem 6.3, combined with Proposition 7.5, implies

that

P (Vn ∈ Gr(n − d , n)) �
[

n
n − d

]
q
P

(
Vn � Fn−d

q

)
→ µ(d), (7.27)

for each fixed d ∈ N.

Proposition 7.6.
∞∑

d�0

µ(d) � 1. (7.28)

Therefore, there is a well defined function ∆ : [0, 1) → N that associates to each
p ∈ [0, 1) the smallest d such that µ(J0, dK) ≥ p; explicitly

∆(p) �
∞∑

k�0

[p > µ(J0, kK)]. (7.29)

The sum is finite for every p ∈ [0, 1). Note that ∆ is left continuous. This function
plays an important role in the proof of Theorem 8.2.

We prove first a lemma that will be useful in the proof of Proposition 7.6.

3We denote by Ja , bK the “discrete interval” [a , b] ∩ Z.
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Lemma 7.7. For every n ∈ N and every d ∈ [0, n],

(q−(n−d+1); q−1)∞
q−(n+1); q−1)∞

≤ 1. (7.30)

Moreover, for every n ∈ N and every d ∈ J0, 2
√

nK,

1 − c(q)q−(
√

n+1)2 ≤
(q−(n−d+1); q−1)∞

q−(n+1); q−1)∞
, (7.31)

where c(q) � 2(q−1; q−1)∞.

Proof. In this proof we use repeatedly the q-binomial theorem (6.5). For any k ∈ N,
q−k(n+1) ≤ q−k(n−d+1), which in turn implies (7.30):

1
(q−(n+1); q−1)∞

�

∞∑
k�0

q−k(n+1)

(q−1; q−1)k

≤
∞∑

k�0

q−k(n−d+1)

(q−1; q−1)k

�
1

(q−(n−d+1); q−1)∞
.

To prove (7.31), first remark that

1
(q−(n−d+1); q−1)∞

− 1
(q−(n+1); q−1)∞

�

∞∑
k�1

q−k(n+1)(qkd − 1)
(q−1; q−1)k

≤ (q−1; q−1)−1
∞

∞∑
k�1

q−k(n+1)qkd

≤ (q−1; q−1)−1
∞

∞∑
k�1

q−k(
√

n+1)2 .

Remark that we omit the term corresponding to k � 0, since it vanishes. The first
of these inequalities is implied by the trivial bound x − 1 ≤ x and the fact that
{(q−1; q−1)k}k decreases with k; the second, from d ≤ 2

√
n. The geometric series∑∞

k�1 q−k(
√

n+1)2 equals q−(
√

n+1)2(1− q−(
√

n+1)2)−1, that is upper-bounded by 2q−(
√

n+1)2 ,
because q ≥ 2. Hence, we have

1
(q−(n−d+1); q−1)∞

− 1
(q−(n+1); q−1)∞

≤ 2(q−1; q−1)−1
∞ q−(

√
n+1)2

� c(q)q−(
√

n+1)2 .

Finally, note that 1
(q−(n−d+1);q−1)∞

� 1+ (positive term)≥ 1, therefore it is also true that

1
(q−(n−d+1); q−1)∞

− 1
(q−(n+1); q−1)∞

≤
c(q)q−(

√
n+1)2

(q−(n−d+1); q−1)∞
. (7.32)

�
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Proof of Proposition 7.6. To simplify notation, set

A(d) :� −1
2
(d − (1

2
− logq θ))2 +

1
2
(1
2
− logq θ)2. (7.33)

and Bn � (−θ−1; q−1)−1
n . Recall from (6.10) that[

n
n − d

]
q
�

qn2S2(d/n)/2(q−(d+1); q−1)∞(q−(n−d+1); q−1)∞
(q−1; q−1)∞(q−(n+1); q−1)∞

. (7.34)

This and (7.22) give

1 �

n∑
d�0

P (Vn ∈ Gr(n − d , n))

� Bn

n∑
d�0

qA(d)(q−(d+1); q−1)∞
(q−1; q−1)∞

(q−(n−d+1); q−1)∞
(q−(n+1); q−1)∞

≤ Bn

n∑
d�0

qA(d)(q−(d+1); q−1)∞
(q−1; q−1)∞

. (7.35)

At the end we have used the inequality (7.30). In turn, (7.35) implies that

(−θ−1; q−1)∞ ≤
∞∑

d�0

qA(d)(q−(d+1); q−1)∞
(q−1; q−1)∞

(7.36)

We shall see that in fact this is an equality, as the proposition claims. Using this time
(7.31), we obtain

1 ≥
b2
√

nc∑
d�0

P (Vn ∈ Gr(n − d , n))

≥ Bn

b2
√

nc∑
d�0

qA(d)(q−(d+1); q−1)∞
(q−1; q−1)∞

(1 − c(q)q−(
√

n+1)2).

which is equivalent to

b2
√

nc∑
d�0

qA(d)(q−(d+1); q−1)∞
(q−1; q−1)∞

≤
(−θ−1; q−1)n

1 − c(q)q−(
√

n+1)2
. (7.37)

In the limit,
∞∑

d�0

qA(d)(q−(d+1); q−1)∞
(q−1; q−1)∞

≤ (−θ−1; q−1)∞. (7.38)

and this finishes the proof. �



Chapter 8

Generalized information theory

In this chapter, we prove a fundamental result on measure concentration for the
Grassmannian process (Theorem 8.2), that generalizes the asymptotic equipartition
property to this setting. It justifies the definition of “typical subspaces”. Section 8.3
applies this result to source coding.

8.1 Remarks on measure concentration and typicality

The following definition covers the different stochastic models discussed so far. We
use it to clarify the correspondence between Shannon’s information theory for se-
quences and our version for vector subspaces from the probabilistic viewpoint.

Definition 8.1 (Refinement of a law). Let π : (A,A) → (B,B) be a measurable map,
and p a probability measure on (B,B). The law has a refinement with respect to
π (or π-refinement) whenever there exists a probability distribution p̃ on (A,A)
such that π∗ p̃ � p, where π∗ p̃ denotes the image law (the push-forward of p̃, its
marginalization).

In applications, p is the law of a (B,B)-valued random variable X and p̃, the law
of a (A,A)-valued random variable Y. When B ⊂ C,

Ep̃(eitπ(Y)) � Ep(eitX). (8.1)

There are four fundamental examples:
1. The probability measure Ber(ξ)×n on {0, 1}n , that assigns to every sequence

with k ones the probability ξk(1 − ξ)n−k , is a refinement of the law Bin(n , ξ)
with respect to the surjection π1 : {0, 1}n → {0, 1, ..., n}, (x1 , ..., xn) 7→

∑
i xi .

2. Theprevious example generalizes to the so-calledmultinomial distribution. Let
S � {s1 , ..., sm} be a finite set and µ any probability law on S; set pi :� µ({si}).
The law µ⊗n assigns to a sequence x in Sn the probability

∏m
i�1 pai(x)

i , where
ai(x) denotes the number of appearances of the symbol si in the sequence x.
Let T � { (k1 , ..., km) ∈ Nm | ∑m

i�1 ki � n }; there is a surjection π2 : Sn → T
given by x 7→ (a1(x), ..., am(x)). Denote by ν the marginalization of µ⊗n under
this map, given explicitly by ν({(k1 , ..., km)}) �

( n
k1 ,...,kn

) ∏m
i�1 pki

i . Then µ
⊗n is a

π2-refinement of ν.



132 Typical subspaces

3. The probability measure
∏n−1

i�1 Ber( θq i

1+θq i ) on {0, 1}n is a refinement of the law
Binq(n , θ) under the application π1 introduced above, see (7.5).

4. The probabilitymeasure on Gr(n) defined by (7.19), that we denote Grass(n , θ),
is also a refinement of Binq(n , θ) with respect to the surjection π3 : Gr(n) →
{0, 1, ..., n},V 7→ dim V .

Let us consider for a moment the binomial case 1. Since Wn ∼ Bin(n , p), Cheby-
shev’s inequality reads P

(
|Wn − pn | > n

1
2+ξ

)
≤ p(1 − p)/n2ξ, which goes to 0 as

long as ξ > 0. In other words, the measure Bin(n , p) concentrates on the interval
In ,ξ � Jnp − n

1
2+ξ , np + n

1
2+ξK ∩ J0, nK, in the sense that P (Wn ∈ Ic

n) → 0 as n → ∞,
and therefore themeasure Ber(ξ)×n concentrates on π−1

1 (In ,ξ), that can be regarded as
a set of “typical sequences”. Moreover, the different type classes π−1(t), for t ∈ In ,ξ,
have cardinality exp{nH1(p) + o(n)}. An analogous argument shows that the mea-
sure Binq(n , θ) concentrates on the interval Jn ,ξ � Jk∗n − nξ , k∗n + nξK ∩ J0, nK for any
ξ > 0, and hence Grass(n , θ) concentrates on π−1

3 (Jn ,ξ). However, there is a differ-
ence: while Bin(k |n , p) goes to 0 for any value of k, and in fact on needsmore than

√
n

different types k to accumulate asymptotically a prescribed probability pε :� 1 − ε,
the values of Grass(k |n , θ) � P (Vn ∈ Gr(k.n)) tend to the constant value µ(d), inde-
pendent of n. In the limit, only a finite number of different types k are necessary
to accumulate probability pε, and the corresponding type classes differ in size (even
asymptotically). Theorem 8.2 bellow reflects this particular situation.

8.2 Typical subspaces
We are ready to prove the main result of this part of the thesis, which extends
Theorems 3 and 4 of Shannon’s seminal article [78] to this setting.

Theorem 8.2. Let {Yn}n∈N∗ denote a q-binomial process, Yn ∼ Binq(n , θ); {Vn}n∈N its
associated Grassmannian process; and δ ∈ (0, 1) an arbitrary number. Let ε > 0 be such that
pε :� 1 − ε is a continuity point of ∆. Define An �

⋃an
k�0 Gr(n − k , n) as the smallest set of

the form
⋃m

k�0 Gr(n − k , n) such that P (Vn ∈ Ac
n) ≤ ε. Then, there exists n0 ∈ N such that,

for every n ≥ n0,
1. An �

⋃∆(pε)
k�0 Gr(n − k , n);

2. for any v ∈ An such that dim v � k,����� logq(P (Vn � v)−1)
n

− n
2

S2(k/n)
����� ≤ δ. (8.2)

The size of An is optimal, up to the first order in the exponential: let s(n , ε) denote
min{ |Bn | | Bn ⊂ Gr(n) and P (Vn ∈ Bn) ≥ 1 − ε }; then

lim
n

1
n

logq |An | � lim
n

1
n

logq s(n , ε)

� lim
n

n
2

S2(∆(pε)/n)

� ∆(pε).

(8.3)

The set An correspond to the “typical subspaces”, in analogy with typical se-
quences.
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Proof. To shorten the notation, let us write Pn (A) instead of P (Vn ∈ A), and Gn
k

instead of Gr(k , n).
Given any η > 0, there exists n(η) ∈ N such that, for every n ≥ n(η) and every

d ∈ J0,∆(pε)K,
|Pn

(
Gn

n−d

)
− µ(d)| <

η

∆(pε) + 1
, (8.4)

because Pn

(
Gn

n−d

)
→ µ(d) for each d.

Since pε is a continuity point of ∆, a piece-wise constant function, there exists
ξ > 0 such that

∆(1 − ε − ξ) � ∆(1 − ε) � ∆(1 − ε + ξ).
Remark now that, for every n ≥ n(ξ),

∆(pε)∑
d�0

Pn
(
Gn

n−d

)
>

∆(pε)∑
d�0

µ(d) − ξ ≥ 1 − ε, (8.5)

because µ(J0,∆(pε)K) �
∑∆(pε)

d�0 µ(d) ≥ 1 − ε + ξ. This is a direct consequence of
∆(pε) � ∆(1 − ε + ξ).

Analogously, for each n ≥ n(ξ),

∆(pε)−1∑
d�0

Pn
(
Gn

n−d

)
<

∆(pε)−1∑
d�0

µ(d) +
∆(pε)
∆(pε) + 1

ξ

< 1 − ε − ξ

∆(pε) + 1
< 1 − ε, (8.6)

because µ(J0,∆(pε) − 1K) < 1 − ε − ξ: if this is not the case, ∆(1 − ε − ξ) ≤ ∆(ε) − 1.
The inequalities (8.5) and (8.6) imply the part 1 of the theorem whenever n ≥ n(ξ).

We suppose now that n > n(ξ). Let v be an element of An of dimension k, and
set d � n − k. The formula in Proposition 7.5 can be stated as

−
logq P (Vn � v)

n
�

g(d , n)
n

+
n
2

S2(d/n), (8.7)

where we have set g(d , n) � 1
2 (d − ( 12 − logq θ))2 − 1

2 (12 − logq θ)2 + logq(−θ−1; q−1)n .
Since d belongs to the interval J0,∆(pε)K, independent on n, and (−θ−1; q−1)n →
(−θ−1; q−1)∞, there exists n0 ≥ n(ξ) such that, for every n ≥ n0 and every d ∈
J0,∆(pε)K, g(d , n)/n < δ, which proves part 2 of the theorem.

For n big enough, ∆(pε) belongs to the interval [n/2, n]. The inequalities in
Lemma 6.2 imply that[

n
n − ∆(pε)

]
q
≤ |An | ≤

∆(pε)∑
k�0

[
n

n − k

]
q
≤ (∆(pε) + 1)

[
n

n − ∆(pε)

]
q
. (8.8)

Therefore,

lim
n

1
n

logq |An | � lim
n

1
n

logq

[
n

n − ∆(pε)

]
q
� ∆(pε), (8.9)
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where the second equality comes from (6.14).
For any ε, we show now how to build iteratively a set Bn of minimal cardinal-

ity such that Pn (Bc
n) ≤ ε: start with Bn � ∅ and then add vector subspaces of Fn

q
one-by-one, picking at each time any of the vector subspaces of highest dimension
in Bc

n , until you attain Pn (Bc
n) ≤ ε. Let n − bn be the dimension of the last space

included in Bn . It is easy to prove that bn < 2
√

n, as a consequence of Cheby-
shev’s inequality (the interval [n − 2

√
n , n] accumulates probability pε when n is

big enough). This construction gives in fact the smallest possible set, because the
function fn : [0, n] → R, x 7→ θx qx(x−1)/2/(−θ, q)n is strictly convex and has at-
tains its minimum at x0 �

1
2 − logq θ; therefore, all the subspaces are included in

Bn in decreasing order of probability, and the probability of the last space included
is bounded bellow by θn−2

√
n q(n−2

√
n)(n−2

√
n−1)/2/(−θ, q)n , which is much bigger that

(−θ, q)−1
n , the maximum of fn on [0, x0], when n is big enough.

Two versions of Bn only differ in the particular subspaces of dimension n − bn

they include, but they coincide on
⋃bn−1

k�0 Gn
n−k . In what follows, Bn denotes any of

the possible sets. Remark also that Bn ⊂ An ; even more, an � bn (a strict inequality
between the two contradicts the minimality of either Bn or an). It is also true in
general that

pε ≤ Pn (Bn)

�

an∑
k�0

Pn
(
Bn ∩ Gn

n−k

)
� Pn

(
Bn ∩ Gn

n−an

)
+

an−1∑
k�0

Pn
(
Bn ∩ Gn

n−k

)
. (8.10)

We restrict ourselves again to the case in which pε is continuity point of∆, in such
a way that ∆(pε) � an � bn . Under these hypotheses, we are able to lower-bound
uniformly the term Pn

(
Bn ∩ Gn

n−∆(pε)

)
by using (8.10), and deduce from this that |Bn |

grows like |An |, that in turn grows like |Gn
n−∆(pε) |, as shown in (8.9). In fact, we have

that

∆(pε)−1∑
k�0

Pn
(
Bn ∩ Gn

n−k

)
≤
∆(pε)−1∑

k�0

Pn
(
Gn

n−k

)
< 1 − ε − ξ

∆(pε) + 1
, (8.11)

where we have used again the bound in (8.6). Inequalities (8.10) and (8.11) imply
that

ξ

∆(pε) + 1
< Pn

(
Bn ∩ Gn

n−∆(pε)

)
. (8.12)

When n > n0, the part (2) entails that Pn (x) ≤ q−n2S2(∆/n)/2+nδ for every x ∈ Gn
n−∆(pε),
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or equivalently Pn (x) qn2S2(∆/n)/2−nδ ≤ 1. Then,

|Bn | ≥ |Bn ∩ Gn
n−∆(pε) |

≥
∑

x∈Bn∩Gn
n−∆(pε )

Pn (x) qn2S2(∆(pε)/n)/2−nδ

≥ qn2S2(∆(pε)/n)/2−nδPn

(
Bn ∩ Gn

n−∆(pε)

)
> qn2S2(∆(pε)/n)/2−nδ ξ

∆(pε) + 1
. (8.13)

We deduce that
lim inf

n

1
n

logq |Bn | ≥ lim
n

n
2

S2(∆(pε)/n) − δ. (8.14)

On the other hand, since Bn ⊂ An , it is clear that

lim sup 1
n

logq |Bn | ≤ lim
n

1
n

logq |An |

� lim
n

n
2

S2(∆(pε)/n).
(8.15)

Since δ > 0 is arbitrarily small, (8.14) and (8.15) imply that limn
1
n logq |Bn | exists and

equals ∆(pε). The theorem is proved. �

Remark 8.3. The definition of An still makes sensewhen pε is a discontinuity point of
∆. In this case, there exists ξ > 0 such that∆(pε)+1 � ∆(pε+ξ) and∆(pε) � ∆(pε−ξ) .
Inequality (8.5) can be easily adapted to show that

∑∆(pε)+1
k�0 Gr(n−k , n) ≥ 1−ε, which

implies that an ≤ ∆(pε) + 1; by (8.6), an ≥ ∆(pε). Of course, part 2 in the Theorem
still makes sense. We also have that Bn ⊂ An and an � bn . The problems appear in
the comparison of |Bn | and |An |; it is possible that Pn

(
Bn ∩Gr(n − ∆(pε), n)

)
goes to

zero very fast when n → ∞, and (8.14) is not valid any more. However, we can still
adapt the bounds in (8.13) to prove

lim inf
n

1
n

logq |An | ≥ lim inf
n

1
n

logq |Bn |

≥ lim
n

1
n

logq

[
n

n − (∆(pε) − 1)

]
q

� ∆(pε) − 1,

because bn � an ≥ ∆(pε) and therefore Gr(n − (∆(pε) − 1), n) ⊂ Bn . Analogously,
Bn ⊂ An and an ≤ ∆(pε) + 1 lead to

lim sup
n

1
n

logq |Bn | ≤ lim sup
n

1
n

logq |An |

≤ lim
n

1
n

logq

[
n

n − (∆(pε) + 1)

]
q

� ∆(pε) + 1,

where we have used again (8.8).
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Remark 8.4. In the classical case of sequences, all the typical sequences tend to be
equiprobable, in the sense of (0.24). This is not valid for the process Vn : a typical
space v ∈ An of dimension n − d satisfy asymptotically the bounds q−n( n

2 S2(d/n)+δ) ≤
P (Vn � v) ≤ q−n( n

2 S2(d/n)−δ), for any δ > 0, and n
2 S2(d/n) � d + O(1/n).

8.3 Coding

Inspired by [23], wedefine a generalized n-to-k q-ary block code as a pair ofmappings
f : Gr(n) → {1, ..., q}k and φ : {1, ..., q}k → Gr(n). For a given stochastic process
Wn , such that Wn takes values in Gr(n), we define the probability of error of this
code as e( f , φ) � P

(
φ( f (Wn)) , Wn

)
. Small k and small probability of error are

good properties for codes, but there is a trade-off between the two. Let k(n , ε) be
the smallest k such that there exists a generalized n-to-k q-ary block code ( f , φ) that
satisfies e( f , φ) ≤ ε.

Proposition 8.5. For the Grassmanian process Vn introduced above and for all ε > 0 such
that pε � 1 − ε is a continuity point of ∆, one has

lim
n

k(n , ε)
n

� ∆(pε). (8.16)

Proof. The existence of an n-to-k q-ary block code ( f , φ) such that e( f , φ) ≤ ε is
equivalent to the existence of a set Bn ⊂ Gr(n) such that P (Vn ∈ Bn) ≥ 1 − ε and
|Bn | ≤ qk (let Bn be the set of sequences that are reproduced correctly...). As in
the main theorem, let s(n , ε) denote the minimum cardinality of such a set. The
statement in Proposition 8.5 is therefore equivalent to limn

1
n logq s(n , ε) � ∆(pε),

which is already proved. �

In simpler terms, it is always possible to code all the typical subspaces An �⋃∆(pε)
k�0 Gr(n−k , n)with different code-words if one disposes of qn(∆(pε)+ξ) suchwords,

for ξ positive and arbitrarily small, as long as n is big enough. In contrast, it is
asymptotically impossible if one disposes of qn(∆(pε)−ξ′) different code-words, for any
ξ′ > 0.

8.4 Further remarks

A recent paper [44] proposes the study of “exploding” phase spaces: statistical
systems such that the cardinality of the space of configurations grows faster than kn ,
the combination of n components that can occupy k states. The total grassmannians
Gr(n) � Gr(n , Fq) are an example, since their cardinality grows like q

n2
4 +o(n2). This

can be deduced from the unimodality of the q-binomial coefficients (Lemma 6.2) and
our asymptotic formulae, because[

n
bn/2c

]
q
≤ |Gr(n)| ≤ (n + 1)

[
n
bn/2c

]
q

(8.17)
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and therefore

lim
n

2
n2 logq |Gr(n)| � lim

n

2
n2 logq

[
n
bn/2c

]
q

� S2

(
1
2
,

1
2

)
�

1
2
.

(8.18)

In fact, the values of limn→∞ |Gr(2n + 1)|q−(2n+1)2/4 and limn→∞ |Gr(2n)|q−(2n)2/4

depend only on q and can be determined explicitly in terms of the Euler’s generating
function for the partition numbers and the Jacobi theta functions ϑ2 and ϑ3, see [54,
Cor. 3.7]

A link between Tsallis entropy and the size of the effective phase space (the config-
urations whose probability is nonzero) was already suggested by Tsallis in [88, Sec.
3.3.4]. There, H(ρ−1)/ρ appears naturally as a extensive quantity when the size of the
effective phase space grows sub-exponentially as Nρ, for certain ρ > 0. Nonetheless,
these growth rates are not deduced from a combinatorial model.
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Chapter 9

Simplicial information structures

9.1 Definition and examples

Given a set I :� {1, ..., n} ≡ [n], the abstract simplex ∆(I) is the category whose
objects are subsets of I and whose arrows correspond to inclusions: S→ T iff T ⊂ S.
Let ∧ and ∨ denote respectively the product and coproduct in ∆(I), and ∪, ∩ the
usual operations of sets. Given sets S, T ∈ Ob ∆(I), the product S ∧ T equals S ∪ T
and the coproduct S ∨ T is S ∩ T.

A full subcategory K of ∆(I) is called a simplicial subcomplex if S ∈ Ob K implies
that T ∈ Ob K, for every T such that S→ T (this is called a ’face’ of S).

Given a collection {Ei}i∈I of Hausdorff topological spaces, we introduce a functor
E : S→Meas that maps each S ∈ Ob K to the measurable space (ES ,B(ES)), where
ES :�

∏
i∈S Ei (remark that E∅ � {∗}) and BS ≡ B(ES) denotes the corresponding

Borel σ-algebra; the morpisms are canonical projections. An arrow f : S → T in
∆(I)—an inclusion of sets T ⊂ S—induces a canonical inclusion ιT,S : ET ↪→ ES and
a canonical projection E ( f ) :� πS,T : ES → ET in the category of topological spaces
(hence measurable). For example, if S � {i1 , ..., ik} then

πI ,S :EI → ES

(x1 , ..., xn) 7→ (xi1 , ..., xik ).
(9.1)

Let BS denote the Borel σ-algebra of ES; this is the σ-algebra generated by the open
sets of ES. The projection πS,T induces an inclusion f ∗ : BT ↪→ BS that maps b ∈ BT
to the corresponding cylinder π−1

S,T(b).
The pair (K, E ) is a simplicial information structure; it clearly verifies all the

properties stated in Definition 1.6. Sometimes we write XS instead of S ∈ Ob K if we
want to emphasize its interpretation as a random variable.

There is an additional property when each space Ei is second-countable.

Proposition 9.1. Let S, T be subsets of I. Consider the diagram S S ∧ T Y←→fS ←→fT

in ∆(I). If the spaces {Ei}i∈I are second-countable, then

σ( f ∗S(BS), f ∗T(BT)) � BS∧T ,

where σ( f ∗S(BS), f ∗T(BT)) denotes the sub-σ-algebra ofBS∧T generated by f ∗S(BS) ∪ f ∗T(BT).
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Proof. Each set Ei has a countable basis Gi : this means that every open set can be
written as a countable union of open sets in the basis, which in turn implies that
B(Ei), by definition generated by the topology of Ei , is in fact generated byGi . More
generally, the rectangles

∏
i∈S Gi , with Gi ∈ Gi , are a basis of the topology of the

product space ES (this is a general topological fact); these rectangles generate BS,
because every open set can be written as countable union of rectangles.

We have to show that BS∧T ⊂ σ( f ∗S(BS), f ∗T(BT)), the opposite inclusion been
trivial. Since every rectangle

∏
i∈S Gi is an element ofBS, the corresponding cylinder

π−1
S,S∪T (

∏
i∈S Gi) is contained in f ∗S(BS). In fact, these cylinders generate f ∗S(BS). The

σ-algebra σ( f ∗S(BS), f ∗T(BT)) contains then the intersections

π−1
S,S∪T

(∏
i∈S

Gi

)
∩ π−1

T,S∪T
©«
∏
j∈T

H j
ª®¬ (9.2)

that can be written as rectangles
∏

i∈S∪T Ui , where Ui � Gi ∩ Hi if i ∈ S ∩ T, Ui � Gi
if i ∈ S \T, and Ui � Hi if i ∈ T \S; it is clear that we can obtain any rectangle in ES∪T
this way. Hence σ( f ∗S(BS), f ∗T(BT)) contains the generators of BS∧T , therefore whole
σ-algebra too. �

In thiswork,we limit ourselves to the second-countable case. The choice of certain
reference measure µi on each measurable space (Ei ,Bi) induces a product measure⊗

i∈S µi on (ES ,BS), for any S. We suppose that each µi , hence every measure
involved, is σ-finite (see Proposition F.6): this is crucial to apply the disintegration
theorems that give regular versions of conditional probabilities and also to prove
functoriality of various constructions by using Fubini’s theorem.

Here are some examples of simplicial information structures:
1. Finite spaces: For each i ∈ I, Bi is a finite nontrivial Boolean algebra, each

Ei is the set of its atoms (with the discrete topology), and µi is the counting
measure. Each product

⊗
i∈S µi , with S ∈ Ob ∆(I), gives again the counting

measure: this explains why reference measures do not appear explicitly in the
treatment of information cohomology of finite structures. 1

2. Euclidean spaces: Each Ei is the real line; we suppose that some Lebesgue
measure µi has been chosen. Each space ES �

⊕
i∈S Ei can be identified with

the free vector space generated by S, in such a way that the unit hypercube in
ES has Lebesgue measure

∏
i∈S λi([0, 1]).

3. Topological groups: This is a generalization of the previous example: each Ei
is a Hausdorff, locally compact topological group and each λi is a chosen (left)
Haar measure.

Given an arbitrary information structure (S, E ), one can introduce a covariant
functor Λ : S → Sets that associates to each X ∈ Ob S the set Λ(X) of measures
on BX ; given an arrow f : X → Y in S, the morphism Λ( f ) : Λ(X) → Λ(Y)

1Already in the foundational paper by Shannon [78], there seems to be an important difference
between discrete and continuous sources: the latter are studied by means of differential entropy, that
depends explicitly on a reference measure. Shannon says: “In the discrete case the entropy measures
in an absolute way the randomness of the chance variable. In the continuous case the measurement is
relative to the coordinate system.” (Emphasis by Shannon.) We hope this text will make clear that such
absolute character is illusory: even in the finite case, one could consider any other reference measure;
for example, a multiple of the counting measure, see the remarks after Proposition 12.3.
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(sometimes f to simplify notation) is given by the pre-composition of each measure
λ : BX → [0, 1] with the map f ∗ : BY → BX i.e. f λ � λ ◦ f ∗; this operation is
called marginalization. Like in Part I and II, we write Y∗ instead of Λ( f ) if the map
involved is clear from context. Probabilities correspond to a subfunctorΠ of Λ, such
that Π(X) � { λ ∈ Λ(X) | λ(EX) � 1 }; it is clear that, for every arrow f : X → Y in S,
f λ(EY) � λ( f ∗(EY)) � λ(EX) � 1.

9.2 Probabilities on information structures

9.2.1 Conditional probabilities

Before studying probabilities on information structures, we review some important
facts about conditional probabilities and disintegration of measures.

Kolmogorov’s definition

In this section, we introduce the standard modern definition of conditional proba-
bilities. We mainly follow the original presentation in Kolmogorov’s book [53]. Let
(E,B, P) be a measurable space. Given an event A ∈ B such that P(A) > 0, define
the conditional probability PA by

∀B ∈ B, PA(B) :�
P(A ∩ B)

P(A) . (9.3)

Clearly, PA(E) � 1.
Given a partition of A � {A1 , ...,An} of E (an experiment in Kolmogorov’s termi-

nology), one can introduce a random variable PA(B) that associates to each e ∈ Ai
the value PAi (B). We call PA(B) the conditional probability of the event B ∈ B after
the experiment A. The function PA(B) is well defined only P-almost surely, but this
is enough to define its integral with respect to P.

The condition
∀A ∈ A, P(A ∩ B) �

∫
A

PA(B)dP (9.4)

is satisfied in this finite case and uniquely characterizes the function PA(B). It holds
true even if A is replaced by the σ-algebra generated by it. Even better: it also makes
sense when A is an arbitrary sub-σ-algebra of B, maybe of infinite cardinality.

Definition 9.2 (Kolmogorov’s definition of conditional probabilities). Let (E,B, P)
be a probability space, A a sub-σ-algebra of B, and B an event in B. The conditional
probability of B given A, denoted PA(B), is an A-measurable function that satisfies
(9.4).

It turns out that PA(B) always exists, as a consequence of the Radon-Nikodym
theorem, and its unique up to P-almost sure equivalence [53, Ch. V]. 2

The main problem with this definition is that nothing guarantees that B 7→
PA(B)(ω) is a probability measure for each ω ∈ Ω. When this is the case, PA is called
a regular version of the conditional probability [71, Ch. 5].

2 PA(B) is an special case of conditional expectation, PA(B) � E(1B |A). We have chosen to follow
here the original presentation by Kolmogorov, instead of the modern presentations that introduce first
general conditional expectations; they are more economical but less motivated.
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Disintegrations

Under very general topological hypothesis, it is possible to build regular versions
of conditional probabilities called disintegrations. We summarize in this section the
main facts about them as presented in [18].

Let (E,B) and (ET ,BT) be measurable spaces, and T : (E,B) → (ET ,BT) a
measurable map.

When ET is finite and BT is its algebra of subsets 2ET , we can associate to any
probability P on (E,B) a collection of maps Pt : B→ R, B 7→ P{T�t}(B), indexed by
t ∈ ET , such that

1. Each Pt is a probability on (E,B);
2. Pt concentrates on {T � t}, which means that Pt(T , t) � 0;
3. For any B ∈ B,

P(B) �
∑
t∈ET

P(T � t)Pt(B).

These properties motivate the following generalization.

Definition 9.3. Let λ a σ-finite measure on (E,B), and µ a σ-finite measure on
(ET ,BT). The measure λ has a disintegration {λt}t∈ET with respect to T and µ, or a
(T, µ)-disintegration, if

1. λt is a σ-finite measure on B concentrated on {T � t}, which means that
λt(T , t) � 0 µ-almost surely.

2. for each measurable nonnegative function f : E→ R,
(a) t 7→

∫
E f dλt is measurable; 3

(b)
∫

E f dλ �
∫

ET

(∫
E f (x)dλt(x)

)
dµ(t).

Disintegrations give regular versions of conditional expectations. Let λ be a
probability measure, µ � Tλ, and {λt} the corresponding T-disintegration. Then
the function x ∈ E 7→

∫
E χB(x)dλT(x) (where χB is the characteristic function) is σT

measurable and a regular version of the conditional probability λσ(T)(B). To prove
this, let A be any element in σ(T) ⊂ B; it can be written as {T ∈ AT} for AT ∈ BT ; the
last property of the disintegration says that, for any B ∈ B∫

A
χB dλ �

∫
E
χA∩B(x)dλ(x)

�

∫
ET

∫
E
χA(x)χB(x)dλt(x)dTλ(t)

Using that x ∈ A if and only if T(x) ∈ AT , we deduce that∫
A
χB dλ �

∫
ET

χAT (t)
(∫

E
χB(x)dλt(x)

)
dTλ(t)

�

∫
A

(∫
E
χB(x)dλT(x)(x)

)
dλ(x).

3 Pollard and Chang [18] uses linear-functional notation for measures. The symbol λt f stands
for

∫
E f dλt . Superscripts next to measures emphasize the variable of integration; for example,∫

ET

(∫
E f (x)dλt (x)

)
dµ(t) could be written µt (λt f ).
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This equality is precisely (9.4), that defines the conditional expectation in Kol-
mogorov’s sense. The fact that each λt(−) is a probability comes from Proposition
9.5 below.

The following theorems are taken from [18].

Proposition 9.4 (Existence of disintegrations). Let λ be a σ-finite Radon measure on a
metric spaceE and letT be ameasurablemap fromE into (ET ,BT). Let µ be a σ-finitemeasure
on BT that dominates the image measure Tλ. If BT is countably generated and contains
all the singletons {t}, then λ has a (T, µ)-disintegration. The λt measures are uniquely
determined up to an almost sure equivalence: if {λ∗t} is another (T, µ)-disintegration then
µ{ t ∈ ET | λt , λ∗t } � 0.

Proposition 9.5. Let λ have a (T, µ)-disintegration {λt}, with λ and µ each σ-finite.
1. The image measure Tλ is absolutely continuous with respect to µ, with density λtE.
2. The measures {λt} are finite for µ-almost all t if and only if Tλ is σ-finite.
3. The measures {λt} are probabilities for µ-almost all t if and only if µ � Tλ.
4. If Tλ is σ-finite then 0 < λtE < ∞ Tλ-almost surely, and the measures

λ̃t(·) �
λt(·)
λtE

are probabilities that give a T-disintegration of λ.

Proposition 9.6. Let λ have a (T, µ)-disintegration {λt} and let ρ be absolutely continuous
with respect to λ with finite density r(x), with each λ, µ and ρ σ-finite.

1. The measure ρ has a (T, µ)-disintegration {ρ̃t} where each ρ̃t is dominated by the
corresponding λt , with density r(x).

2. The image Tρ is absolutely continuous with respect to µ, with density
∫

E r dλt .
3. The measures {ρ̃t} are finite for µ-almost all t if and only if Tρ is σ-finite.
4. The measures {ρ̃t} are probabilities for µ-almost all t if and only if µ � Tρ.
5. If Tρ is σ-finite then 0 < λt r < ∞ Tλ-almost surely, and the measures {ρt} given by∫

E
f dρt �

∫
E f r dλt∫
E r dλt

are probabilities that give a T-disintegration of ρ.

Example 9.7 (Product spaces). We suppose that (E,B, λ) is the product of two mea-
sured spaces spaces (ET ,BT , µ) and (ES ,BS , ν), with µ and ν both σ-finite. Let λt be
the image of ν under the inclusion s 7→ (t , s). Then Fubini’s theorem implies that λt
is a (T, µ)-disintegration of λ. (Remark that µ , Tλ. In general, the measure Tλ is
not even σ-finite.) If r(t , s) is the density of a probability ρ on (E,B), then ρt � λt
with density r(t , s)—the value of t being fixed—and ρ̃t is a probability supported on
{T � t} with density

r(t , s)∫
ES

r(t , s)dν(s)
.
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9.2.2 Densities under conditioning and marginalization

Let Π : S → Sets be the functor of probabilities introduced at the end of Section
9.1. Whenever a probability ρ ∈ Π(S) (that represents a possible ‘law’ of XS) is
absolutely continuous with respect to the reference measure µS, denoted ρ � µS,
the Radon-Nikodym theorem (Proposition F.1) guarantees the existence of a function
fρ ∈ L1(ES ,BS , µS) such that

ρ(A) �
∫

A
fρ(x)dµS(x). (9.5)

The function fρ is known as the probability density function (pdf) of XS. We sum-
marize the relation between ρ, µS and fρ in (9.5) by ρ � fρµS.

Now we describe the marginalization in terms of densities. Given ρ ∈ Π(S)with
ρ � fSµS, an arrow πT,S : S→ T in S, and B ∈ BT , one has

πT,Sρ(B)
(def)
� ρ(π∗T,S(B)) (9.6)

�

∫
π−1

T,S(B)
fS(x)dµ(x) (9.7)

(Fubini)
�

∫
B

(∫
ES\T

fS(xT , xS\T)dµS\T(xS\T)
)

dµT(xT), (9.8)

whichmeans that πT,Sρ has density
∫

ES\T
fXS (xT , xS\T)dµS\T(xS\T)with respect to the

reference measure µT . (The use of Fubini’s theorem F.7 is justified by the positivity
of the densities and the fact that each measure involved is σ-finite.)

The description of conditioning is more involved. Consider sets T ⊂ S ⊂ I, and
the corresponding surjection πT,S : ES → ET . The measure µS has a (πT,S , µT)-
disintegration {µS,t}t∈ET such that each measure µS,t is the image of µS\T under the
inclusion ES\T ↪→ ES , s′ 7→ (s′, t), that can be identified with the product measure
µS\T ⊗ δT�t . See Example 9.7 in Section 9.2.1.

More generally, we can start with a reference measure µS′ ⊗ δS′′�s′′ on ES, for
certain S′ and S′′ that form a partition of S. Set T′ � S′ ∩ T, T′′ � S′′ ∩ T, and denote
by µT′⊗δT′′�π(s′′) themeasure on ET � ET′×ET′′ concentrated on {T′′ � πT′′,S′′(s′′)} :�
ET′ × {πT′′,S′′(s′′)}. 4

Proposition 9.8. The (πT,S , µT′ ⊗ δT′′�π(s′′))-disintegration of µS′ ⊗ δS′′�s′′, denoted by
{(µS′ ⊗ δS′′�s′′)t}t∈ET , verifies

(µS′ ⊗ δS′′�s′′)t � µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ (9.9)

whenever t � (t′, πT′′,S′′(s′′)) ∈ ET′×ET′′ � ET , and this determines it up to µT′⊗δT′′�π(s′′)-
almost sure equivalence.5

Proof. We prove that the given collection of measures satisfy all the conditions in
Definition 9.3. The disintegration is almost sure unique according to Proposition

4Usually we omit the subscripts of π if they are clear from context.
5Remark that (µS′ ⊗ δS′′�s′′)t is well-defined only µT′ ⊗ δT′′�π(s′′)-almost surely. Its value on {T′′ ,

π(s′′)} is immaterial. The same remark is relevant for the statement of Proposition 9.9.
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9.4. Remark that the specific value of the disintegration on {T′′ , π(s′′)} is not
well-defined.

Themeasure µS′\T ⊗δT′�t′⊗δS′′�s′′ is σ-finite, being a product of σ-finitemeasures
(see Proposition F.6). The union bound implies its concentration on the correspond-
ing level set:

(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′){T , (t′, π(s′′)}
� (µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′)({T′ , t′} ∪ {T′′ , π(s′′)})
≤ µS′\T(ES′\T)δT′�t′(T′ , t′)δS′′,s′′(ES′′)
+ µS′\T(ES′\T)δT′�t′(ET′)δS′′,s′′(π(S′′) , π(s′′)) � 0.

We prove now the disintegration property, that says: for every BS-measurable func-
tion f , ∫

E
f dµS′ ⊗ δS′′�s′′ �

∫
ET

(∫
E

f d(µS′ ⊗ δS′′�s′′)t
)

dµT′ ⊗ δT′′�π(s′′) (9.10)

According to (9.9), for t ∈ ET′ × {πT′′,S′′(s′′)},∫
E

f d(µS′ ⊗ δS′′�s′′)t �
∫

ES′\T

f (z , t′, s′′)dµS′\T(z). (9.11)

Hence∫
ET

(∫
E

f d(µS′ ⊗ δS′′�s′′)t
)

dµT′ ⊗ δT′′�π(s′′)(t)

�

∫
ET′×{πT′′ ,S′′(s′′)}

(∫
ES′\T

f (z , t′, s′′)dµS′\T(z)
)

dµT′ ⊗ δT′′�π(s′′)(t)

�

∫
{πT′′ ,S′′(s′′)}

(∫
ET′

∫
ES′\T

f (z , t′, s′′)dµS′\T(z)dµT′(t′)
)
δT′′�π(s′′)(t′′)

�

∫
ES′

f (w , s′′)dµS′(w).

Thefirst equality is justifiedby µT′⊗δT′′�π(s′′)(ET′×{πT′′,S′′(s′′)}c) � 0. The secondand
the third are a consequence of Fubini’s theorem for positive functions (Proposition
F.7). Recall that, according to the definition of a simplicial information structure,
each µ is σ-finite, ES′ � ES′\T × ET′, and µS′ � µS′\T ⊗ µT′. This proves (9.10).

Finally, Proposition F.8 establishes the measurability of

(t′, s′′) 7→
∫

ES′\T

f (z , t′, s′′)dµS′\T(z).

Hence (t′, π(s′′)) →
∫

ES′\T
f (z , t′, s′′)dµS′\T(z) is measurable too, in virtue of Propo-

sition F.5. �

Proposition 9.9. Let ρ be a probability on (ES ,BS), absolutely continuous with respect to
µS′ ⊗ δS′′�s′′ with density fρ. Let U, T be subsets of S. Then:
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1. ρ has a (πT,S; µT′ ⊗ δT′′�π(s′′))-disintegration {ρ̃t}t∈ET such that

ρ̃(t′,π(s′′)) � fρµS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ ,

2. ρ has a πT,S-disintegration {ρt} such that ρt is a probability measure πT,Sρ-almost
surely and

ρ(t′,π(s′′)) �
fρ∫

ES′\T
fρ(x , t′, s′′)dµS′\T(x)

µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ ,

3. Let {ρw}w∈ET∪U be a πT∪U,S-disintegration of ρ. The equality

ρw � (ρt(w))u(w) ,

where w ∈ ET∪U , t(w) :� πT,T∪U(w) and u(w) :� πU,T∪U(w), holds µ(T∪U)′ ⊗
δ(T∪U)′′�π(s′′)-almost surely.

4. Let ϕ be a nonnegative real-valued BT ⊗ BU-measurable function. The equality∫
ET

∫
EU

ϕ(t , u)dU∗ρt(u)dT∗ρ(t) �
∫

ET∪U

ϕ(ι(w))d(T ∧U)∗ρ(w), (9.12)

where ι : ET∪U → ET × EU , w 7→ (t(w), u(w)) holds.

Proof.
Claim (1): Since ρ is absolutely continuous with respect to µS′ ⊗ δS′′�s′′, with density
fρ, Propositions 9.6 and 9.8 imply that ρ has a (πT,S; µT′ ⊗ δT′′�π(s′′))-disintegration
{ρ̃t}t∈ET such that each ρ(t′,π(s′′)) is absolutely continuous with respect to µS′\T ⊗
δT′�t′ ⊗ δS′′�s′′ with Radon-Nikodym derivative fρ.

Claim (2): It is an immediate consequence of Proposition 9.8-(5).
Claim (3): Set W :� T ∪ U, W′ :� W ∩ S′, and W′′ :� W ∩ S′′. Since µW′ ⊗

δW′′�πW′′ ,S′′(s′′)(EW′ × {πW′′,S′′(s′′)}c}) � 0, we assume that w � (w′, π(s′′)) ∈ EW′ ×
EW′′ � EW . In virtue of (2), ρw equals

fρwµS′\W ⊗ δW′�w′ ⊗ δW′′�π(s′′) �

fρ∫
E fρ dµS′\W ⊗ δW′′�π(s′′)

µS′\W ⊗ δW′�w′ ⊗ δW′′�π(s′′). (9.13)

Define t(w) � πT,W (w), t(w)′ � πT′,W′(w), t(w)′′ � πT′′,W′′(w), and similarly u(w),
u(w)′, u(w)′′. By functoriality t(w)′′ � πT′′,W′′(w′′) � πT′′,S′′(s′′).

We apply now the result in (2) to the measure ρt(w), coming from the πT,S-
disintegration of ρ. It is absolutely continuous with respect to the measure µS′\T ⊗
δT′�t(w)′ ⊗ δS′′�s′′, with density

fρt(w) �
fρ∫

ES′\T
(x , t(w)′, s′′)dµS′\T(x)

. (9.14)

Remark that the measure µS′\T ⊗ δ(T′,S′′)�(t(w)′,s′′) can be disintegrated according
Proposition 9.8. Define Ũ′′ :� (T′∪ S′′) ∩U, Ũ′ :� U \ Ũ′′, and ũ(w)′ :� πŨ′,S(w). We
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apply again the result of (2), mutatis mutandis, to say that the πU,S-disintegration of
ρt(w) verifies, for u � u(w) � (ũ(w)′, πŨ′′,T′∪S′′(t(w)′, s′′)),

(ρt(w))u(w) � µ(S′\T)\U ⊗ δŨ′�ũ(w)′ ⊗ δ(T′,S′′)�(t(w)′,s′′).

and corresponding density is

fρt(w)∫
E fρt(w) dµ(S′\T)\U ⊗ δŨ′�ũ(w)′ ⊗ δ(T′,S′′)�(t′,s′′)

�

fρ∫
E fρ(x , ũ(w)′, t(w)′, s′′)dµ(S′\T)\U(x)

. (9.15)

Remark now that the disjoint union Ũ′ t T′ equals (T ∪ U) ∩ S′ � W′, therefore
EW′ � EŨ′ × ET′ and (ũ(w)′, t(w)′) corresponds to the initial w′. The equality

µ(S′\T)\U ⊗ δŨ′�ũ(w)′ ⊗ δ(T′,S′′)�(t(w)′,s′′) � µS′\W ⊗ δW�w′ ⊗ δS′′�s′′ ,

allow us to rewrite (9.15) and establish that

(ρt(w))u(w) �
fρ∫

E fρ(x ,w′, s′′)dµS′\W (x)
µS′\W ⊗ δW�w′ ⊗ δS′′�s′′

that is exactly the expression in (9.13).
Claim (4): Since T∗ρ � µT′ ⊗ δT′′�π(s′′), we can restrict the domain of integration:∫

ET

∫
EU

ϕ(t , u)dU∗ρt(u)dT∗ρ(t) �
∫

ET′×{πT′′ ,S′′(s′′)}

(∫
EU

ϕ(t , u)dU∗ρt(u)
)

dT∗ρ(t).

(9.16)
In (2) we obtained an explicit formula for ρt appearing in the last integral,

ρ(t′,π(s′′)) �
fρ

K(t′, s′′)µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ ,

with K(t′, s′′) :�
∫

ES′\T
fρ(x , t′, s′′)dµS′\T(x). The function K(t′, s′′) is the density of

T∗ρ (at least on the probability 1 set ET′ × {π(s′′)}).
Let us write µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ in the form µS̃′ ⊗ µS̃′′�π(t′,s′′), with S̃′ � S′ \ T

and S̃′′ � T′ t S′′. Then Ũ � S̃′ ∩U and Ũ′′ � S̃′′ ∩U coincide with the sets already
introduced in the proof of (3). The measure U∗ρt is absolutely continuous with
respect to µŨ′ ⊗ δŨ′′�π(t′,s′′), where π(t′, s′′) :� πŨ′′,T′tS′′(t′, s′′). Moreover,

U∗ρt(B)

�

∫
π−1(B)

fρ
K(t′, s′′) dµS̃′ ⊗ δS̃′′�(t′ ,s′′)

�

∫
B

(∫
ES̃′\U×ES̃′′\U

fρ
K(t′, s′′) dµS̃′\U ⊗ δS̃′′\U�πS̃′′\U,S̃′′ (t′ ,s′′)

)
dµŨ′ ⊗ δŨ′′�π(t′ ,s′′)(ũ)

�

∫
B

(∫
ES′\W

fρ(x , ũ , πS̃′′\U,S̃′′(t′, s′′))
K(t′, s′′) dµS′\W (x)

)
dµŨ′ ⊗ δŨ′′�π(t′ ,s′′)(ũ).
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We conclude that the density of U∗ρt w.r.t. µŨ′ ⊗ δŨ′′�π(t′,s′′) is∫
ES′\W

fρ(x , ũ , πS̃′′\U,S̃′′(t′, s′′))
K(t′, s′′) dµS′\W (x). (9.17)

The function

g(ũ |t′) :�
∫

ES′\W

fρ(x , ũ , πS̃′′\U,S̃′′(t′, s′′))dµS′\W (x),

correspond to the product of the density of U∗ρt|in (9.17)|and the density of T∗ρ.
Hence the integral in (9.16) equals∫

ET′×{πT′′ ,S′′ (s′′)}

(∫
EŨ′×EŨ′′

ϕ(t , ũ′, ũ′′)g(ũ′, ũ′′ |t′)dµŨ′ ⊗ δŨ′′�π(t′ ,s′′)(ũ′, ũ′′)
)

dµT′ ⊗ δT′′�π(s′′)(t′, t′′)

�

∫
ET′×{πT′′ ,S′′ (s′′)}

(∫
EŨ′

ϕ(t , ũ′, πŨ′′ ,S̃′′(t′, s′′))g(ũ′, πŨ′′ ,S̃′′(t′, s′′)|t′)dµŨ′

)
dµT′ ⊗ δT′′�π(s′′)(t′, t′′)

�

∫
ET′

∫
EŨ′

ϕ(t′, πT′′(s′′), ũ′, πT′∩U(t′), πU′′(s′′))g(ũ′, πT′∩U(t′), πU′′(s′′)|t′)dµŨ′(ũ′)dµT′(t′)

where we have used Fubini’s theorem two times, first for the inner integral and then
for the outer one. Recall now that W′ � (T ∪U) ∩ S′ � T′ t Ũ′, EW′ � ET′ × EŨ′ and
µW′ � µT′ ⊗ µŨ′. Therefore Fubini again allows us to write∫

EW′
ϕ(πT′(w′)πT′′(s′′), πŨ′(w′), πU′′(s′′))g(πŨ′(w′), πU∩T′(w′), πU′′(s′′)|πT′(w′))dµW′(w′)

�

∫
EW′

ϕ(ι(w))d(T ∪U)∗ρ(w)

where the last equality is justified by the fact that

g(πŨ′(w′), πU∩T′(w′), πU′′(s′′)|πT′(w′)) �
∫

S′\W
fρ(x , w′, πW′′(s′′))dµS′\W (x)

is the density of (T ∪U)∗ρ(w)with respect µW′ ⊗ δW′′�π(s′′). �

9.3 Probabilistic functionals

For given S, let Π(S, ν) denote the set of probability laws on (ES ,BS) absolutely
continuous with respect to the measure ν, and R(S) the set of simplicial reference
measures,

R(S) � { µ ∈ Λ(S) | µ � µS′ ⊗ δS′′�a for some S′, S′′disjoint such that S � S′ ∪ S′′ }.
(9.18)

and finally Q(S) the set of probability measures absolutely continuous with respect
to a given reference measure,

Q(S) � { (µ, ρ) ∈ Λ(S) ×Π(S) | µ � µS′ ⊗ δS′′�a for some
S′, S′′disjoint such that S � S′ ∪ S′′, and ρ � µ }. (9.19)
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Equivalently,
Q(S) :�

⋃
µ∈R(S)

{µ} ×Π(S, µ) (9.20)

Q is a functor. An arrow πT,S : S → T, with the corresponding surjection πT,S :
ES → ET , induces a map Q(πT,S) : Q(S) → Q(T) that sends (µS′ ⊗ δS′′�s′′ , ρ) to
(µT′ ⊗ δT′′�π(a) , πT,S∗ρ), where T′ � S′ ∩ T, T′′ � S′′ ∩ T, and π(a) :� πT′′,S′′(s′′). It
is important to remark that, for any A ∈ BT , if (µT′ ⊗ δT′′�π(s′′))(A) � 0, then (µS′ ⊗
δS′′�s′′)(π−1

T,S(A)) � 0 in virtue of the disintegration formula; therefore ρ(π−1
T,S(A)) � 0

as a consequence of the absolute continuity imposed on the definition of Q, and
πT,S∗ρ(A) is also zero. This means that (µT′ ⊗ δT′′�t(a) , πT,S∗ρ) effectively lies in Q(T).

Let F+(S) be the set of measurable nonnegative functions ϕ : Q(S) → R. For
every T ∈ SS and ϕ ∈ F+(S), set

(T.ϕ)(µS′ ⊗ δS′′�s′′ , ρ) :�
∫

ET

ϕ(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ , ρt)dT∗ρ(t), (9.21)

where t � (t′, t′′) ∈ ET , T∗ρ is a probability on ET absolutely continuous with
respect to µT′ ⊗ δT′′�πT′′ ,S′′(s′′), with density

∫
ES′\T

fP(z , y′, x′′)µS′\T(z), and {ρt} is a
πT,S-disintegration of ρ.

Proposition 9.10. For any T,U ∈ SS and ϕ ∈ F+(S),

T.(U.ϕ) � (T ∪U).ϕ. (9.22)

Proof. The iterated application of the definition gives

(T.(U.ϕ))(µS′ ⊗ δS′′�s′′ , ρ)

�

∫
ET

(U.ϕ)(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ , ρt)dT∗ρ(t)

�

∫
ET

(∫
EU

ϕ(µ(S′\T)\U ⊗ δŨ′�ũ′ ⊗ δ(T′,S′′)�(t′,s′′) , (ρt)u)dU∗ρt(u)
)

dT∗ρ(t)

In virtue of Proposition 9.9-(4), the last integral equals∫
EW

ϕ(µ(S′\T)\U ⊗ δŨ′�ũ(w)′ ⊗ δ(T′,S′′)�(t(w)′,s′′) , (ρt(w))u(w))d(T ∪U)∗ρ(w).

But (S′\T)\U � S′\W , Ũ′tT′ � W′, and (ρt(w))u(w) � ρw almost surely (Proposition
9.9), therefore

(T.(U.ϕ))(µS′ ⊗ δS′′�s′′ , ρ) �
∫

EW

ϕ(µS′\W ⊗ δW′�w′ ⊗ δS′′�s′′ , ρw)d(T ∪U)∗ρ(w),

as we wanted to prove. �

In other words: equation (9.21) defines a monoid action of SS on F+(S).
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9.4 Restriction to Gaussian laws; functional module

We make now the following hypotheses: each Ei � R, in such a way that ES � R|S |

taking S itself as the canonical basis. Each referencemeasure µS is the corresponding
Lebesgue measure on ES, normalized to assign unit measure to the hypercube.
Moreover, let us introduce a sub-sheaf of Q defined by

QGauss(S) :� { (µ, ρ) ∈ Λ(S) ×Π(S) | µ � µS′ ⊗ δS′′�a for some
S′, S′′disjoint such that S � S′ ∪ S′′, ρ � µ, and ρ gaussian }. (9.23)

A gaussian (or normal) probability distribution is defined as a probability on ES such
that, for every linear functional f : ES → R, the push-forward f∗ρ is a univariate
normal. Denote by (e1 , ..., en) the base of ES and let (e∗1 , ..., e∗n) be the dual basis.
Each ρ is uniquely characterized by a mean vector m ∈ ES, whose components
are mi �

∫
x de∗i ρ(x), and a covariance matrix Σ � (σi j)1≤i , j≤|S | such that σi j �∫ ∫

(x − µi)(y − µ j)de∗i ρ(x)de∗jρ(y). See Appendix D . As a consequence we also
denote the elements of QGauss(S) by triplets (µ,m ,Σ).6

Given a reference measure µS′ ⊗ δS′′�s′′, we say that the covariance matrix is
admissible if the eigenvectors associated to nonzero eigenvalues span ES′ ⊂ ES. If this
is the case, a gaussian law with covariance Σ is absolutely continuous with respect
to µS′, cf. Proposition D.7.

LetFGauss(S)be the additive abeliangroupofmeasurable functionsϕ : QGauss(S) →
R that verify the following polynomial-growth condition:

for every referencemeasure µS′⊗δS′′�s′′, every admissible covariance
matrix Σ, and every variable T coarser than S, there exist C > 0 and
γ > 0 such that

|ϕ(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ ,m ,Σ)| ≤ C(1 + ‖t‖ + ‖m‖)γ .

(9.24)

Proposition 9.11. Equation (9.21) defines an action of the monoid SS on the vector space
FGauss(S): for every T,U ∈ SS and every ϕ ∈ FGauss(S),

U.(T.ϕ) � TU.ϕ.

It extends linearly to an action of R[SS], the monoid algebra.
Proof. Decompose ϕ into its positive and negative part, in such a way that ϕ �

ϕ+ − ϕ− , and |ϕ | � |ϕ+ | + |ϕ− |. The functions ϕ+ and ϕ− belong to F+(S) and verify
the condition (9.24).

Consider T ∈ SS. The random variable T corresponds to certain components
of the variable S, and its marginal law T∗ρ is absolutely continuous with respect to
µT′⊗ δT′′�π(s′′). If ρ � N|S |(m ,Σ), then T∗ρ � N|T |(mT ,ΣT), where mT ,ΣT are specified
in Proposition D.6. Moreover, T � T′ t T′′ translates into ET � ET′ × ET′′, which in
turn induces splittings mT � (mT′ ,mT′′) and

ΣT �

(
ΣT′ ΣT′,T′′

ΣT′′,T′ ΣT′′

)
.

6It is characteristic of this simplicial case that every space ES has a preferred basis, such that, for
every T ∈ SS , ET is naturally included in ES and corresponds the span of the basis elements T. In a
nonsimplicial case, there could exist S ∈ K and collections {U1 , ...,Un} ⊂ SS and {T1 , ..., Tm} ∈ SS
such that ES �

⊕
1≤i≤n EUi �

⊕
1≤ j≤m ET j , and EUi ∩ ET j � {0} for every i , j.
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Since T′′ � π(s′′) almost surely, the covariance matrices ΣT′′ and ΣT′,T′′ � Σ
′
T′′,T′

vanish. The matrix ΣT′ is positive definite, because the law of T′ is absolutely
continuous with respect to µT′ (see Proposition D.7). We have,

dT∗ρ
dµT′ ⊗ δT′′�π(s′′)

(t′, t′′) � 1
(det(2πΣ)) 1

2
exp

(
−1

2
(t′ − mT′)trΣ−1

T′ (t′ − mT)
)
. (9.25)

Consider now the action as defined in (9.21).

(T.ϕ)(µS′ ⊗ δS′′�s′′ ,m ,Σ) �
∫

ET

ϕ(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ , m̄(t), Σ̄)dT∗ρ(t),

Proposition D.6 states that

m̄(t) �
(
mS\T + ΣS\T,TΣ

−
T(t − µT)

t

)
∈ ES\T × ET , (9.26)

and
Σ̄ �

(
ΣS\T − ΣS\T,TΣ

−
TΣT,S\T 0

0 0

)
. (9.27)

Since ϕ+ and ϕ− satisfy (9.24), the expressions ϕ±(µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ , m̄(t), Σ̄)
grow slower than certain polynomial in t′ when ‖t′‖ → ∞ (remark that (9.26) is
linear in t � (t′, t′′)), and therefore their integrals against the density (9.25) converge.
In this case,

T.ϕ � T.ϕ+ − T.ϕ−.

Proposition 9.11 ensures that, for any pair of variables T,U ∈ SS, U.(T.ϕ±) � UT.ϕ±.
Thus, U.(T.ϕ) � TU.ϕ+ − TU.ϕ− � TU.ϕ. �
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Chapter 10

Probabilistic information
cohomology on simplicial
structures

Given any information structure (S, E ), the set SS :� { T | S → T } is a monoid
with product (T,U) 7→ T ∪ U �: T ∧ U. Given S → T there is a natural inclusion
ST ↪→ SS. Therefore X 7→ SX is a presheaf of monoids, and X 7→ AX :� R[SX] is a
presheaf of algebras.

The category of A -modules, Mod(A ), is abelian and has enough injectives.
Information cohomology is H•(S, E ) :� Ext•(S, E ), as defined in Section 2.2, and we
use the bar-resolution in order to characterize the cocycles as in Section 2.5.

In this chapter, we study information cohomology on a simplicial structure (K, E ).
We take as coefficients a module F , such that each F (S) correspond to measurable
real-valued functionals defined on a subset of Q(S) stable by conditioning and such
that, for every ϕ ∈ F (S) and Y ∈ SS, the integrals Y.ϕ+ and Y.ϕ− are finite, in which
case Y.ϕ is well defined and the monoid SS acts on F (S). An example is the module
FGauss introduced in Section 9.4.

10.1 Computation of H0

A 0-cocycle is a collection of functions ϕS[] : Q(S) → R such that

ϕS[](µ, ρ) � ϕ∅(δ0 , δ0) ∈ R, (10.1)

thus they correspond to real constants.
A 0-coboundary ϕ must satisfy 0 � (δϕ)S[T]. Supposing that ϕS[] � C, one has

(δϕ)S[T](µS′ ⊗ δS′′�s′′ , ρ)
� (T.ϕ)S[](µS′ ⊗ δS′′�s′′ , ρ) − ϕS[](µS′ ⊗ δS′′�s′′ , ρ)

�

∫
ET

ϕS[](µS′\T ⊗ δT′�t′ ⊗ δS′′�s′′ , ρt)dT∗ρ(t) − ϕS[](µS′ ⊗ δS′′�s′′ , ρ)

� C − C � 0

We conclude that H0(K,F ) � R.
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10.2 General properties of 1-cocycles

Remark first that δC0 � {0}, so we only need to compute cocycles:

H1(K,F ) � ker(δ : C1 → C2). (10.2)

Recall that C1 � HomA (B1 ,F ) and a 1-cochain ϕ ∈ C1 corresponds to a collection
of morphisms ϕS ∈ HomAS (B1(S),F (S)) that verifies two conditions:

1. Equivariance: ϕS(T[U]) � T.ϕ([U]).
2. Joint locality: whenever S→ T,

ϕS[T](µS′ ⊗ δS′′�s′′ , ρ) � ϕT[T](µT′ ⊗ δT′′�π(s′′) , T∗ρ)

We write ϕ[T] instead of ϕT[T], and even of ϕS[T] if S is clear from context (its
evaluation is related to ϕT[T] by joint locality).

A 1-cochain ϕ is a 1-cocycle if additionally it verifies, for every S ∈ Ob K and
every T,U ∈ SS,

0 � T.ϕS[U] − ϕS[TU] + ϕS[T] (10.3)

as functionals inF (S). This and the commutativity of the product give the symmetric
equation

T.ϕS[U] + ϕS[T] � U.ϕS[T] + ϕS[U]. (10.4)

The general properties of disintegrations of measures imply that entropy is a 1-
cocycle, cf. Proposition 11.35.

Proposition 10.1. If ϕ is a 1-cocycle, then:
1. For every S ∈ Ob K, ϕ[S](δs , δs) � 0.
2. For every S ∈ Ob K, and any decomposition S � S′ t S′′,

ϕS[S](µS′ ⊗ δS′′�s′′ , ρ) � ϕ[S′](µS′ , S′∗ρ).

Proof.
Claim (1): Setting S � T � U in (10.3) and evaluating it on (δs , δs), we obtain

0 � (S.ϕ)S[S](δs , δs) � ϕS[S](δs , δs).

Claim (2): Set T � S′ and U � S′′ in (10.3), and evaluate the expression on
(µS′ ⊗ δS′′ , ρ). The conditional term vanishes, because

(S′.ϕ[S′′])S(µS′ ⊗ δS′′�s′′ , ρ) �
∫

ES′
ϕ[S′′](δ(s′,s′′) , δ(s′,s′′))dS′∗ρ(s′).

The claim becomes a consequence of joint locality, which implies that

ϕS[S′](µS′ ⊗ δS′′�s′′ , ρ) � ϕ[S′](µS′ , S′∗ρ).

�

Proposition 10.1-(2) implies thatwe only need to characterize each functionalϕ[S]
evaluated on the corresponding nondegenerate laws (µS , ρ). This simplifies greatly
the computation of cocycles, as expressed in the following proposition. (Recall that
Π(S, µS) are the measures on (ES ,B(ES)) absolutely continuous with respect to µS.)
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Proposition 10.2. Let ϕ be a 1-cochain and Φ � {φS}S∈Ob K a collection of measurable
functionals φS : Π(S, µS) → R. The following conditions are equivalent:

1. ϕ is a 1-cocycle, and
ϕS[S](µS , ·) ≡ φS(·). (10.5)

2. For every S ∈ Ob K, every U ⊂ S, and every ρ ∈ Π(S, µS),

φS(ρ) �
∫

EU

φS\U((S \U)∗ρu)dU∗ρ(u) + φU(U∗ρ). (10.6)

Besides, for every S ∈ Ob K and U ⊂ S,

ϕS[U](µS′ ⊗ δS′′�s′′ , ·) ≡ φU∩S′((U ∩ S′)∗(·)). (10.7)

From now on, we use the collection Φ � {φS}S∈Ob K that verifies ϕS[U](µS′ ⊗
δS′′�s′′ , ·) ≡ φU∩S′((U∩S′)∗(·)) as a simplified description of a 1-cochain; such cochain
is a 1-cocycle if and only if it satisfies the cocycle equation (10.6).

Proof. First, let us prove that (1)⇒(2): Since ϕ is a 1-cocycle, for every S ∈ Ob K,
every U ⊂ S, and (µS′ ⊗ δS′′�s′′ , ρ) ∈ Q(S),

ϕS[U](µS′ ⊗ δS′′�s′′ , ρ) � ϕU[U](µU∩S′ ⊗ δS′′∩U�π(s′′) ,U∗ρ) (10.8)
� ϕU∩S′[U ∩ S′](µU∩S′ , (U ∩ S′)∗ρ) (10.9)
� φU∩S′((U ∩ S′)∗ρ), (10.10)

where (10.8) corresponds to joint locality, and (10.9) comes from Proposition 10.1-(2)
along with the functoriality of marginalizations. The last equality takes (10.5) into
account. This establishes (10.7).

Consider now an arrow S → U in K. The cocycle condition (10.3) implies in
particular that

ϕS[S](µS , ρ) �
∫

EU

ϕS[S \U](µS\U ⊗ δU�u , ρu)dU∗ρ(u) + ϕS[U](µS , ρ). (10.11)

Because of (10.7),

ϕS[S \U](µS\U ⊗ δU�u , ρu) � φS\U((S \U)∗ρu). (10.12)

Joint locality also entails that

ϕS[U](µS , ρ) � ϕU[U](µU ,U∗ρ) � φU(U∗ρ). (10.13)

The equalities (10.12) and (10.13) show that (10.11) corresponds exactly to (10.6).
Now we prove (2)⇒(1): That ϕ is a 1-cocycle means that, for any S ∈ Ob K and

T,U ∈ SS,

ϕS[T ∪U](µS′ ⊗ δS′′�s′′ , ρ)
(!)
�∫

EU

ϕS[T](µS′\U ⊗ δ(U,S′′)�(u ,s′′) , ρu)dU∗ρ(u) + ϕS[U](µU′ ⊗ δU′′�π(s′′) ,U∗ρ), (10.14)

where U′ � S′ ∩U and U′′ � S′′ ∩U as usual.
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Consider each term separately. The identity (10.7) says that

ϕS[W](µS′ ⊗ δS′′�s′′ , ρ) � φW′(W′∗ρ), (10.15)

where we have written again W instead of T ∪ U, and W′ :� W ∩ S′ � T′ ∪ U′.
Similarly,

ϕS[T](µS′\U ⊗ δ(U,S′′)�(u ,s′′) , ρu) � φT′\U′((T′ \U′)∗ρu), (10.16)

because T ∩ (S′ \U) � (T ∩ S′) \ (S′ ∩U) � T′ \U′. Finally,

ϕS[U](µU′ ⊗ δU′′�π(s′′) ,U∗ρ) � φU′(U∗ρ). (10.17)

Replace (10.15), (10.16) and (10.17) in (10.14) to obtain the equivalent form

φT′∪U′((T′ ∪U′)∗ρ) �
∫

EU

φT′\U′((T′ \U)∗ρu)dU∗ρ(u) + φU′(U∗ρ), (10.18)

which corresponds precisely to the identity (10.6) if one takes into account the fun-
toriality of marginalizations (φU′(U∗ρ) � φU′(U∗(T′ ∪U′)∗ρ), etc.). �

Remark 10.3. If each ϕT[T] is just a function of the probabilities on (ET ,BT), then

S.ϕU[T](ρ) �
∫

ET

ϕT[T](δπ(u))dU∗ρ(u),

whenever T ⊂ U ⊂ S. If φT[T](ρ) is the differential entropy when ρ � µT , the
quantity ϕT[T](δπ(u)) is expected to diverge to −∞ under any sensible definition (cf.
Section 12.2). In general, divergences are immediately introduced with conditioning
if one does not update the pertinent reference measure. The sheaf F allows us to
keep track of this. The relevance of the reference measure was already remarked
by Shannon (see the Introduction) and later by Csiszár, who defined the generalized
entropy as

Sµ(ρ) � −
∫

log
(

dρ
dµ

)
dρ,

when λ is an arbitrary reference measure and µ a probability such that µ � λ. This
is further developed in Chapter 12.

10.3 Computation of H1: Gaussian case

In this case each reference measure µS is the Lebesgue measure on ES � R|S |, and
each functional φS is defined on the set of nondegenerate |S |-variate normal (gaus-
sian) laws on ES. Since ES comes with a basis, S itself, these laws are in bĳective
correspondence with pairs (m ,Σ) ∈ ES × PD(S),1 that correspond to the mean and
covariance, respectively.2 From now on, we write φS(m ,Σ).

1PD(S) denotes the positive definite matrices in M|S |(R).
2More precisely, a basis establishes a bĳection B : ES × PD(S) ∼→ ΠGauss(S, µS) and precomposition

with B defined the functional φS,B :� φS ◦ B : ES × PD(S) → R, that we also denote by φS since the
basis is fixed. In a nonsimplicial case, different bases should be taken into account in such a way that,
for every G ∈ GL(ES), φS,B(m ,Σ) � φS,GB(Gm ,GTΣG).
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Consider a nondegenerate gaussian law ρ with mean m and covariance Σ. Fol-
lowing the conventions in Section D, the splitting of the variable, S � S1 t S2 (i.e
XS � (XS1 ,XS2) ∈ ES1 × ES2) induces an splitting of the parameters: m � (m1 ,m2),
and

Σ �

(
Σ11 Σ12
Σ21 Σ22

)
.

According to Proposition D.6, the marginal law U∗ρ is a |U |-variate normal distri-
bution with mean m1 and covariance Σ11, and (S \U)∗ρx1 is a |S \U |-variate normal
with mean

m̄2(x1) :� m2 + Σ21Σ
−1
11 (x1 − m1),

and covariance
Σ̄22 :� Σ22 − Σ21Σ

−1
11Σ12.

Since Σ is supposed to be positive definite,3 Σ11 and Σ22 are positive definite too,
hence invertible.

The functionals in Φ are subject to the condition (10.6): for any S ∈ K and any
decomposition S � S1 t S2,

φS(m ,Σ) �
∫

ES1

φS2(m̄2(x1), Σ̄22)
exp(−1

2 (x1 − m1)trΣ−1
11 (x − m1))√

|2πΣ11 |
dx1

+ φS1(m1 ,Σ11). (10.19)

where we have followed the conventions in the previous paragraph. As a conse-
quence, they also fulfill the symmetric equation (10.4):∫

ES1

φS2(m̄2(x1), Σ̄22)
exp

(
− 1

2 (x1 − m1)trΣ−1
11 (x1 − m1)

)√
|2πΣ11 |

dx1 − φS2(m2 ,Σ22) �∫
ES2

φS1(m̄1(x2), Σ̄11)
exp

(
− 1

2 (x2 − m2)trΣ−1
22 (x2 − m2)

)√
|2πΣ22 |

dx2 − φS1(m1 ,Σ11). (10.20)

10.3.1 1-cocycles that depend only on the covariance matrix

First, we compute the cocycles that depend only on the covariancematrix, φS(m ,Σ) �
φS(Σ). The domain of φS are the positive definite matrices in M|S |(R), that we denote
PD(S).4

Proposition 10.4. Suppose that K is connected and all its vertices belongs to a 1-cell. A
collection of C2 functions5 Φ � {φS : PD(S) → R}S∈K satisfies the cocycle condition
(10.19) if and only if there exist real constants a and {ki}i∈I such that, for every S ∈ K,

φS(Σ) � a ln(|Σ|) +
∑
i∈S

ki . (10.21)

3The measure ρ is a |S |-variate normal distribution absolutely continuous with respect to the
Lebesgue measure on R|S | . This is equivalent to Σ � 0, as shown in Proposition D.7.

4The basis establishes a bĳection B : ES ×PD(S) ∼→ ΠGauss(S, µS) and the functional φS,B :� φS ◦B :
ES × PD(S) → R is required to factor through the quotient ES × PD(S) → PD(S). We use the same
symbol φS to denote the factor, since there is no risk of confusion.

5PD(S) ⊂ M|S |(R) is supposed to have the standard differential structure.
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Proof. For any i ∈ I, there exists j ∈ I such that S :� {i , j} ∈ Ob K. Set S1 � {i}
and S2 � { j}. Let Σ � [ σ11 σ12

σ21 σ22 ] be the covariance matrix of (S1 , S2). Under these
circumstances, (10.20) says that

φi(σ11 − σ2
12σ22) − φi(σ11) � φ j(σ22 − σ2

12σ11) − φ j(σ22), (10.22)

where we have written φi instead of φ{i}. The derivative with respect to σ11 is

Ûφi(σ11 − σ2
12σ22) − Ûφi(σ11) � Ûφ j(σ22 − σ2

12σ11)
σ2

12

σ2
11
, (10.23)

that can be derived with respect to σ22 to obtain

Üφi(σ11 − σ2
12σ
−1
22 )

σ2
22

�

Üφ j(σ22 − σ2
12σ
−1
11 )

σ2
11

. (10.24)

Or equivalently,

Üφi(σ11 − σ2
12σ
−1
22 )
(σ11σ22 − σ2

12)2

σ2
22

� Üφ j(σ22 − σ2
12σ
−1
11 )
(σ11σ22 − σ2

12)2

σ2
11

. (10.25)

Set u � σ11 − σ2
12σ
−1
22 ∈ (0,∞), v � σ22 − σ2

12σ
−1
11 ∈ (0,∞), to obtain

Üφi(u)u2
� Üφ j(v)v2

� constant �: −a , (10.26)

which means that Ûφi(u) � a/u + bi , and φi(u) � a ln(u) + bi u + ki , with a , bi , ki ∈ R.
But the functions u 7→ Bi u do not solve (10.22) unless both Bi vanish, while u 7→
a ln(u) + ki is a solution. Therefore,

φi(σ) � a ln(σ) + ki and φ j(σ) � a ln(σ) + k j

for arbitrary real constants a , ki , k j . Since the complex K is connected, a must be
common to all vertices. Remark that in this case,

φS(Σ) � φ j(|Σ|/σ11) + φi(σ11) � a ln(|Σ|) + k1 + k2. (10.27)

The general form (10.21) is obtained by induction: consider S � S1 t {m},

ΣS �

(
ΣS B
C σmm

)
and denote by ΣS/σmm the Schur complement of σmm in ΣS. Then

φS(ΣS) � φS1(ΣS/σmm) + φm(σmm) (10.28)

� a ln(|ΣS/σmm | |σmm |) +
∑
i∈S1

ki + km (10.29)

� a ln(|ΣS |) +
∑
i∈S

ki . (10.30)

In the last step, we used Schur’s determinantal identity (Proposition C.1).
It is easy to show that these φS just introduced satisfy all the cocycle equations

(10.19). In fact, by linearity, this can be verified separately for φS
1 (m ,Σ) �

∑
i∈S ki and

φS
2 (m ,Σ) � a ln(|Σ|). In the case of φ•1, this is immediate. For φ•2, (10.19) is equivalent

to Schur’s determinantal identity. �
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Remark 10.5. Set d :� |S |. Let ρ be a nondegenerate gaussian law on ES, with mean
m and covariance Σ. According to the traditional definition, the differential entropy
of ρ (with respect to the Lebesgue measure λS on ES) is

hS(ρ) :� −
∫

ES

logb

(
dρ

dλS

)
dρ

� −
∫

ES

logb

(
exp

(
−1

2 (x − m)trΣ−1(x − m)
)

|2πΣ|1/2

)
dρ

�
logb(e)

2

∫
ES

(
(x − m)trΣ−1(x − m)

) e−
1
2 (x−m)trΣ−1(x−m)

|2πΣ|1/2
dx +

1
2

logb(|2πΣ|)

The change of variables6 y � Σ−1/2(x − m) gives∫
ES

(
−1

2
(x − m)trΣ−1(x − m)

) exp(−1
2 (x − m)trΣ−1(x − m))
|2πΣ|1/2

dx �∫
ES

(−y2)
2

exp(− y2

2 )
|2πI |1/2

dy � −d.

We conclude that
hS(ρ) � d

(
logb(2πe)

2

)
+

1
2

logb(|Σ|). (10.31)

This is a particular case of the general form in Proposition 10.4, where a � (2 ln(b))−1

and ki � logb(2πe)/2.

10.3.2 Decomposition of φS as a sum; Convolutions

In this and the following sections, we use the theory of distributions, because the
conditional term in the cocycle equations can be written as a convolution and its
analysis is naturally related to the Fourier transform. The main definitions and
results of this theory that are used in this thesis are summarized in Appendix E.

Remark that φS1 defines a distribution in S′(ES1), the space of tempered distribu-
tions, through the formula f ∈ S 7→

∫
φS1 f ; the integral converges in virtue of the

polynomial-growth condition (9.24).
Given a distribution T ∈ S′(Rd), its convolution with an element f ∈ S(Rd),

denoted T ∗ f , corresponds to the function x 7→ 〈T, τx f̌ 〉 (the operator τx is a trans-
lation, τx f (y) :� f (x + y), and f̌ (x) :� f (−x)). The following proposition shows
that sometimes the conditional term in the cocycle equations can be written as a
convolution.

Proposition 10.6. 1. The integral∫
ES2

φS1(m̄1(x2), Σ̄11)
exp

(
−1

2 (x2 − m2)trΣ−1
22 (x2 − m2)

)√
|2πΣ22 |

dx2 (10.32)

equals E
(
φS1(m1 − Y1 ,Σ11 − Σ′11)

)
, where Y1 has a |S1 |-variate normal distribution

with mean m1 and covariance Σ′11 :� Σ12Σ
−1
22Σ21.

6We denote byΣ−1/2 or
√
Σ the principal square root of the positive definite matrixΣ: its eigenvalues

are the positive square roots of the eigenvalues of Σ.
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2. There expressions

C(S1 , S2 ,Σ) :� E
(
φS1(m1 − Y1 ,Σ11 − Σ′11)

)
− φS1(m1 ,Σ11) (10.33)

and

C(S2 , S1 ,Σ) :� E
(
φS2(m2 − Y2 ,Σ22 − Σ′22)

)
− φS1(m2 ,Σ22) (10.34)

are independent of m, and C(S1 , S2 ,Σ) � C(S2 , S1 ,Σ).
3. If Σ12 is surjective, then the matrix Σ′11 is positive definite and

E
(
φS1(m1 − Y1 ,Σ11 − Σ′11)

)
� (φS1

Σ11−Σ′11
∗ GΣ′11

)(m1), (10.35)

where φS1
A is the map x 7→ φS1(x ,A), and GB is x 7→ e−

1
2 xtrB−1x/

√
det(2πB).

Proof.
Claim (1): The integral (10.32) equals E

(
φS1(m1 − Σ12Σ

−1
22 (X − m2), Σ̄11)

)
, where X ∼

N|S2 |(m2 ,Σ22). According to Proposition D.4,

Y1 :� Σ12Σ
−1
22 (X − m2) ∼ N|S1 |(0, (Σ12Σ

−1
22 )Σ22(Σ12Σ

−1
22 )tr) � N|S1 |(0,Σ12Σ

−1
22Σ21).

The definitions imply that Σ̄11 � Σ11 − Σ′11.
Claim (2): Taking into account part (1), the symmetric equation (10.20) can be

rewritten as

E
(
φS1(m1 − Y1 ,Σ11 − Σ′11)

)
− φS1(m1 ,Σ11) �

E
(
φS2(m2 − Y2 ,Σ22 − Σ′22)

)
− φS1(m2 ,Σ22). (10.36)

with Y1 ∼ Nd(0,Σ′11) and Y1 ∼ Nd(0,Σ′22). The expression on the left depends only on
m1 andΣ, not on m2; similarly, the expression on the right does not depend on m1. We
conclude that both expressions equal certain ”constant” C(S1 , S2 ,Σ) � C(S2 , S1 ,Σ).

Claim (3): Consider x ∈ Rn \ {0}. Since Σ12 surjective, its transpose its injective
and Σ21x � ΣT

12x , 0. Then

xT(Σ12Σ
−1
22Σ21)x � (Σ21x)TΣ−1

22 (Σ21x) > 0,

because Σ−1
22 is positive definite. This proves that Σ′11 is positive definite, which

implies—according to Proposition D.7—that Y1 has a density with respect to µS1 ,
that is precisely GΣ′11

. Therefore,

E
(
φS1(m1 − Y1 ,Σ11 − Σ′11)

)
�

∫
ES1

φS1
Σ11−Σ′11

(m1 − y1)GΣ′11
(y)dy (10.37)

� (φS1
Σ11−Σ′11

∗ GΣ′11
)(m1). (10.38)

�

Remark 10.7. The function C(S1 , S2 ,Σ) is nontrivial. In fact, when φ• is given by
the differential entropy in (10.31), C(S1 , S2 ,Σ) equals the usual mutual information
I(S1 , S2).



Probabilistic information cohomology on simplicial structures 163

Proposition 10.8. For any set S ∈ Ob K and any flag of sets S1 ⊂ S2 ⊂ ... ⊂ S|S | ⊂ S|S | � S
such that |Sk | � k, the equality

φS(m ,Σ) �
∑
i∈S

φi(mi , σii) +
|S |∑

k�2

C(Sk−1 , Sk \ Sk−1 ,ΣSk Sk ) (10.39)

holds, where φi denotes φ{i} and ΣSk Sk is the square block of Σ corresponding to the indexes
in Sk .

Proof. Since Sk � Sk−1 t (Sk \ Sk−1), the cocycle equation says

φSk (mSk ,ΣSk Sk ) � E
(
φSk−1(mSk−1 − YSk−1 ,ΣSk−1Sk−1 − Σ′Sk−1Sk−1

)
)
+ φik (mik , σik ik )

(10.40)
where we have denoted by ik the element in Sk \ Sk−1. Proposition 10.6-(2) says that
the expectation above equals φSk−1(mSk−1 ,ΣSk−1Sk−1) + C(Sk−1 , {ik},ΣSk Sk ). The result
follows by induction on k. �

The quantity
∑|S |

k�2 C(Sk−1 , Sk \ Sk−1 ,ΣSk Sk ) turns out to be independent of the
chosen flag and we call it Dφ(S,Σ):

Dφ(S,Σ) :� φS(m ,Σ) −
∑
i∈S

φi(mi , σii). (10.41)

Remark 10.9. In the case of differential entropy, C(S1 , S2 ,Σ) � −I(S1; S2) holds, and
it is known that

H[(S1 , S2)] � H[S1 |S2] + H[S2] � H[S1] + H[S2] − I(S1; S2). (10.42)

This implies that

H[(S1 , S2 , · · · , Sn)] �
n∑

i�1
H[Si] −

n∑
i�1

I((S1 · · · Si−1); Si), (10.43)

that is an special case of Proposition 10.8. Finally, D(S,Σ) is proportional to
ln(|Σ|/∏i∈S σii).

10.3.3 General cocycles

Provided that |S1 | ≤ |S2 |, the matrix Σ12 is generically surjective and (10.33) has the
form

C(S1 , S2 ,Σ) � (φS1
Σ11−Σ′11

∗ GΣ′11
)(m1) − φS1

Σ11
(m1). (10.44)

Furthermore, GΣ′11
, being a element ofS(ES1), belongs to the spaceO′C of distributions

rapidly decreasing at infinity (convoluters). In virtue of the convolution theorem
(Proposition E.5), the Fourier transform turns the last equation into

φ̂S1(ξ1 ,Σ11 − Σ′11) exp
(
−2π2ξtr

1 Σ
′
11ξ1

)
− φ̂S1(ξ1 ,Σ11) � C(S1 , S2 ,Σ)δξ1�0 , (10.45)

where ξ1 � m̂1, and φ̂S1 belongs to S′(Rd).
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Function Transform

1 δ0

δ0 1

δα0 (x) (2πiξ)α

f̂ (x) f (−ξ) �: f̌ (ξ)

( f ∗ g)(x) f (ξ)g(ξ)

f (x)g(x) ( f̂ ∗ ĝ)(ξ)

|2πΣ|−1/2 exp
(
− 1

2 xtrΣ−1x
)

exp
(
−2π2ξtrΣξ

)
∂α f (x) (2πξ)α f̂ (x)

xα f (x)
( i

2π
)α
∂α f (ξ)

Table 10.1: Fourier transforms used in this thesis, following the definition
f̂ (ξ) �

∫
Rn f (x)e−2πix·ξ dx. Cf. [76, pp. 231ff], [46, App. 2].

In principle, Σ′11 can be any matrix that satisfies 0 � Σ′11 � Σ. In fact, given
Σ′11, consider the equation Σ12Σ

−1
22Σ

tr
12 � Σ′11. Introducing the appropriate change of

base to express Σ22 as the identity (Σ22 � 0), this reduces to Σ̃12Σ̃
tr
12 � Σ11, that has as

solutions any square root of Σ′11. The fact that

Σ �

(
Σ11 Σ12
Σtr

12 Σ22

)
is a valid covariance matrix comes precisely from the condition 0 � Σ′11 � Σ.

In this section, we study the solutions of equation (10.45) in D′(ES1). Each
distribution φ̂ can be restricted to the open set Ω � ES1 \ {0}, to get the equation

φ̂S1(ξ1 ,Σ11 − Σ′11) exp
(
−2π2ξtr

1 Σ
′
11ξ1

)
� φ̂S1(ξ1 ,Σ11), (10.46)

whose solutions are described by the following proposition.

Proposition 10.10. LetΩ be an open set in Rd . For a collection of distributions φ̂S1(·,Σ) ∈
D′(Ω) indexed by positive definite matrices Σ ∈ PD(Rd), the following conditions are
equivalent:

1. For any Σ,Σ′ ∈ PD(Rd) that satisfy 0 � Σ′ � Σ,

ψ̂(ξ,Σ − Σ′) exp
(
−2π2ξtrΣ′ξ

)
� ψ̂(ξ,Σ). (10.47)

2. There exists a distribution ψ̂(ξ, 0) ∈ D′(Ω) such that

ψ̂(ξ,Σ) � ψ̂(ξ, 0) exp
(
−2π2ξtrΣξ

)
, (10.48)

Proof. It is straightforward to verify that (10.48) solves (10.47), for any choice of
ψ̂(ξ, 0).
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Let us prove the other implication. Set Σ′ � (1 − λ)Σ, for any λ ∈ (0, 1) to deduce
from (10.47) that

ψ̂(ξ, λΣ) � ψ̂(ξ,Σ) exp
(
2π2(1 − λ)ξtrΣξ

)
. (10.49)

The distribution on the right is a well defined element of D′(Ω). 7 We finish the
proof showing that, when λ→ 0, ψ̂(ξ, λΣ) tends to

ψ̂(ξ, 0) :� ψ̂(ξ,Σ) exp
(
2π2ξtrΣξ

)
∈ D′(Ω). (10.50)

Define ψ̂λ(ξ) :� ψ̂(ξ, λΣ), and Q(ξ) :� 2π2ξtrΣξ. We must show that, for every test
function f ∈ D(Ω), 〈ψ̂λ , f 〉 → 〈ψ̂0 , f 〉 or equivalently

|〈ψ̂1 , eQ(1 − e−λQ) f 〉| → 0. (10.51)

The function f belongs to D(K), for certain compact set K ⊂ Ω. The continuity of
the linear functional ψ̂1 implies the existence of constants C and m (dependent on K)
such that, for every g ∈ D(K),

|〈ψ̂1 , g〉| ≤ C
∑

α:|α |≤m

∂αg
 , (10.52)

where ‖·‖ denotes ‖·‖L∞(K). Therefore,

|〈ψ̂1 , eQ(1 − e−λQ) f 〉| ≤ C
∑

α:|α |≤m

∂α( f eQ)(1 − e−λQ)
 .

The Leibniz rule and the triangular inequality imply that∂α( f eQ)(1 − e−λQ)
 ≤ ∑

β:β≤α

(
α
β

) ∂β(1 − e−λQ)
 ∂α−β( f eQ)


� (1 − e−λQ)

∂α( f eQ)
 + O(|λ |),

thus

|〈ψ̂1 , eQ(1 − e−λQ) f 〉| ≤ C(1 − e−λQ)
∑

α:|α |≤m

∂α( f eQ)
 + O(|λ |) (10.53)

that tends to zero when λ→ 0. �

Corollary 10.11. Suppose that i ∈ I is contained in a 1-cell S of K. Then, for every ε > 0
and every σ such that 0 < ε < σ,

φi(m , σ) �
∫

Ei

φi(x , ε)
exp

(
− (x−m)2

2(σ−ε)

)
√

2π(σ − ε)
dx + pi(m; σ), (10.54)

where pi(m; σ) is a polynomial in m whose coefficients depend on σ.
7Given u ∈ D′(Ω) and f ∈ C∞(Ω), the distribution u f ∈ D′(Ω) is defined by 〈u f , g〉 :� 〈u , f g〉.
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Proof. As long as each i ∈ I is contained in a 1-cell S of K, we can write S � {i} t S2
and equation (10.44) makes sense. Therefore, we apply Proposition 10.10 to conclude
that, on Ei \ {0},

φ̂i(ξ, σ) � φ̂i(ξ, 0) exp(−2π2σξ2) (10.55)

� φ̂i(ξ, 0) exp(−2π2εξ2) exp(−2π2(σ − ε)ξ2) (10.56)

� φ̂i(ξ, ε) exp(−2π2(σ − ε)ξ2). (10.57)

On the whole Ei , we must add a distribution supported on {0}: a finite linear
combination of derivatives of δ0, see Proposition E.1. We know that φ̂i(ξ, ε) is an
element of S′, therefore we can apply the convolution theorem to conclude.

Remark that pi doesnotdependon ε. In fact, onehas φ̂i(ξ, σ) � φ̂i(ξ, 0) exp(−2π2σξ2)+
p̂i(ξ; σ) as elements ofD′(R). �

Remark 10.12. As an element of D′(R), the function
exp

(
− (x−mi )2

2(σ−ε)

)
√

2π(σ−ε)
tends to the Dirac

mass δm when ε → σ. If we assume that ϕ(x , λ) is continuous in (x , λ), then the
limit of the integral in (10.54) equals ϕ(m , σ) and therefore pi(m; σ) � 0.

Proposition 10.8 established that

φS(m ,Σ) �
∑
i∈S

φi(mi , σii) + D(S,Σ), (10.58)

Therefore, for every ε > 0, we can write

φS(m ,Σ) �
∑
i∈S

∫
Ei

φi(x , ε)
exp

(
− (x−mi)2

2(σii−ε)

)
√

2π(σii − ε)
dx +

∑
i∈S

pi(mi ; σii) + D(S,Σ). (10.59)

The polynomial pi(mi ; σii) can be written as a linear combination of moments of
ρ(m , σ), with coefficients that depend on σ. In turn, the integrals above resemble
moments, whichmotivates the followingdefinition of generalizedmoment functions;
Proposition 10.16 shows that they are cocycles.
Definition 10.13. A map ϕ : R × (0,∞) → C is said to be a generalized moment
function (gmf) associated to the family g � {gε : R→ C}ε>0 if

1. gε(x) exp(−ax2) is integrable for every a > 0,
2. ϕ(m , σ) � 1√

2π(σ−ε)

∫
R

gε(x) exp
(
− (x−m)2

2(σ−ε)

)
dx whenever σ > ε.

Analogously, we define generalized moderate moment function (gmmf) by replacing
the functions gε by elements of S′(R).

We write ϕ(g) or ϕ(m , σ |g) to emphasize the dependency on g.
Remark that generalized moment functions can be added to obtain a new one.

Their name is justified by the following example.
Example 10.14. Let h(x) be a measurable function of x ∈ R bounded by CeAx , for
certain constants A ∈ R, C ∈ R∗+. For every ε > 0, set

fε(x) :� 1√
2πε

∫
R

h(z)e− 1
2
(x−z)2
ε dz. (10.60)

Then ϕ(m , σ) :� fσ(m) is a generalized moment associated to the family { fε}ε>0.
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Proof. If h belongs to L1, we can take the Fourier transform:

f̂ε(ξ) � ĥ(ξ)e−2π2εξ2 (10.61)

Therefore, if η > ε > 0,

f̂η(ξ) � ĥ(ξ)e−2π2ηξ2
� f̂ε(ξ)e−2π2(η−ε)ξ2 ; (10.62)

which implies the desired set of equations by taking the inverse Fourier transform.
To establish the general case, we multiply h by the characteristic function of the

interval [−N,N], obtaining a function h(N) which belongs to L1, and take the limit
when N tends to∞, in the formula

1√
2πη

∫
R

h(N)(z)e−
1
2
(y−z)2
η dz

�
1√

2π(η − ε)
1√

2πε

∫
R

∫
R

h(N)(u)e− 1
2
(x−u)2
ε e−

1
2
(y−x)2
η−ε du dx , (10.63)

which is justified by Fubini’s theorem and Lebesgue’s theorem of dominated conver-
gence. �

Remark 10.15. With h(x) � exp(x), we obtain a generalized moment that is not a
generalized moderate moment.

An axial cochain is a cochain Φ � {φS}S∈Ob S that verifies

φS(m ,Σ) �
∑
i∈S

ϕ(mi , σi |g i), (10.64)

where ϕ(mi , σi |g i) is a gmmf associated to a family g i � {g i
ε}ε>0 ⊂ S′(R).

The following proposition implies that axial cochains are cocycles.

Proposition 10.16. For any ε > 0 and any collection { f i
ε}i∈S in S′(R), the functionals

ψS(m ,Σ) � ∑
i∈S ψ

i(mi , σii), with

ψi(mi , σii) :�
∫

Ei

f i
ε(x) exp

(
−(x − mi)2

2(σii − ε)

)
(2π(σii − ε))−1/2 dx ,

defined for Σ � εI, satisfy the cocycle equation

ψS(m ,Σ) � (S1.ψ
S2)(m ,Σ) + ψS1(m1 ,Σ11) (10.65)

for any Σ � εI.

Proof. Let S � S1 t S2 be any partition. Equation (10.65) is equivalent to the identity

(S1.ψ
S2)(m ,Σ) (!)

�

∑
i∈S2

∫
Ei

f i
ε(x) exp

(
−(x − mi)2

2(σii − ε)

)
(2π(σii − ε))−1/2 dx , (10.66)

that can be interpreted as invariance under conditioning.
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According to Proposition 10.6, there is a variable Y2 ∼ N|S2 |(0,Σ′22) such that

(S1.ψ
S2)(m ,Σ) � E

(
ψS2(m2 − Y2 ,Σ22 − Σ′22)

)
�

∑
i∈S2

E
(
ψi(m2[i] − Y2[i],Σ22[i , i] − Σ′22[i , i])

)
The symbols [i], [i , i] denote components. For the last equality, we have used the
definition of ψ and the linearity of expectations. The marginal Y2[i] has a univariate
normal distribution with mean 0 and variance Σ′22[i , i]. Hence,

(S1.φ
S2)(m ,Σ) �

∑
i∈S2

∫
Ei

©«
∫

Ei

f i
ε(x)

exp
(
− (x−m2[i]−y2[i])2
Σ22[i ,i]−Σ′22[i ,i]−ε

)
√

2π(Σ22[i , i] − Σ′22[i , i] − ε)
ª®®¬

exp
(
− (y2[i])2
Σ′22[i ,i]

)
√

2πΣ′22[i , i]
dy2.

(10.67)
Each double integral is a convolution:

f i
ε ∗x [GΣ22[i ,i]−Σ′22[i ,i]−ε ∗y2 GΣ′22

]`(m2[i])

(where f `(x) � f̌ (x) � f (−x)). Under the Fourier transform, this convolution be-
comes a multiplication

f̂ i
ε(ξ) exp(−2π2ξ2(Σ22[i , i] − Σ′22[i , i] − ε)) exp(−2π2ξ2Σ′22[i , i])) �

f̂ i
ε(ξ) exp(−2π2ξ2(Σ22[i , i] − ε)), (10.68)

which converted back to the original domain gives ψi(m2[i],Σ22[i , i]); the notation
is such that m2[i] � mi and Σ22[i , i] � Σ[i , i]. So we reach the desired conclusion
taking two times the Fourier transform of (10.67). �

Remark now that taking ε � 0, f i
0 (x) � xk and f j

0 � 0 when j , i, we establish
that the usual moments

Mk(m , σ) �
∫

Rr
xk

exp
(
−1

2
(x−m)2
σ

)
√

2πσ
dx

define 1-cocycles through the formula φS(m ,Σ) � Mk(mi , σii). Moreover, setting
f (x) � xk in Example 10.14, we conclude that fε(m) :� Mk(m , ε)defines a generalized
moment function.

Theorem 10.17 (Structure theorem of 1-cocycles, simplicial case). Suppose that every
0-cell of K belongs to a 1-cell. Every 1-cocycle is the sum of an axial cocycle and a multiple of
the entropy i.e. there exist generalized moderate moment functions {ϕ(g i)}i∈S and a constant
C ∈ R such that

φS(m ,Σ) �
∑
i∈S

ϕ(mi , σii |g i) + C ln(|Σ|). (10.69)

Proof. As we already remarked, the results in Proposition 10.8 and Corollary 10.11
imply that

φS(m ,Σ) �
∑
i∈S

ϕ(mi , σii | f i) +
∑
i∈S

pi(mi ; σii) + D(S,Σ), (10.70)
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where f i � {φi(·, ε)}ε>0. Proposition 10.16 shows that the axial part is a cocycle, so

ζS(m ,Σ) �
∑
i∈S

pi(mi ; σii) + D(S,Σ) (10.71)

too.
Consider now S � {i}. The polynomial pi(mi ; σii) can be written in the basis

given by the M j(mi , σii):

pi(mi ; σii) �
ki∑

j�0
c j

i (σii)M j(mi , σii). (10.72)

In principle the coefficients are a function of σii , but now we use that

C({i}, { j},Σ) � E
(
ζi(mi − Yi , σii − σ′ii)

)
− ζi(mi , σii) (10.73)

from Proposition 10.6, which gives

C({i}, { j},Σ) �
ki∑

j�0
c j

i (σii−σ′ii)E
(
M j(mi − Yi , σii − σ′ii)

)
−

ki∑
j�0

c j
i (σ)M j(mi , σii) (10.74)

because D vanishes in this case. The expectation E
(
M j(mi − Y1 , σ11 − σ′11)

)
equals

M j(mi , σii), because M j is itself an axial cocycle (cf. equation (10.68) in the proof of
Proposition 10.16). Reading the equation

C({i}, { j},Σ) �
ki∑

j�0
(c i

j(σ11 − σ′11) − c i
j(σ11))M j(mi , σ), (10.75)

we conclude that c i
j(σii − σ′ii) − c i

j(σii) vanishes for every degree j > 0 (the corre-

sponding M j(mi , σii) depends on m) and hence c j
i (σii)must be constant, say c j

i . Thus
φS(m ,Σ) is a sum of an axial cocycle, a linear combination of moments, and a last
term that depends only on the variance; since everything else is a cocycle, the latter
must be a cocycle too, that equals a ln(|Σ|) +∑

i∈S bi :

φS(m ,Σ) �
∑
i∈S

φ(mi , σii | f̃ i) +
∑
i∈S

ki∑
j�1

c i
j M j(mi , σii) +

∑
i∈S

bi + a ln(|Σ|), (10.76)

The moments themselves are generalized moderate moment functions (and M0 is
constant), which allows us to merge the first three sums. �

Remark 10.18. These simplicial 1-cocycles give a veryparticular role to the coordinate
axes used to define the simplicial information structure. This is not so natural, since
this basis was introduced just for convenience. We are forced to consider more
general structures, that are introduced in the next chapter. We shall see that the only
cocycles that survive are multiples of the dimension (obtained above when all the bi
in (10.76) are equal) and the entropy. Cf. Theorem 11.30.
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10.3.4 Axial cochains and the heat equation

We close this section with some remarks about axial cocycles in connection to the
heat equation.

A gmf or gmmf ϕ(m , σ |g) of m ∈ R and σ ∈ R∗+ is not only measurable: it is
infinitely differentiable in (m , σ) by Lebesgue’s dominated convergence theorem.

Lemma 10.19. A gmf (or gmmf) ϕ � ϕ(g) satisfies the heat equation on R × R∗+:

∂ϕ

∂σ
(m , σ) � 1

2
∂2ϕ

∂m2 (m , σ) (10.77)

Proof. By derivation with respect to m under the integral sign, we get

∂ϕ

∂m
�

1√
2π(σ − ε)

∫
gε(x)

x − m
σ − ε e−

1
2
(x−m)2
σ−ε , (10.78)

then

∂2ϕ

∂m2 � − 1√
2π(σ − ε)3

ϕ(m , σ) + 1√
2π(σ − ε)5

∫
gε(x)(x − m)2e−

1
2
(x−m)2
σ−ε . (10.79)

And by derivation with respect to σ we get directly the half of this sum. �

Proposition 10.20. Every solution of the heat equation that is a differentiable function of
σ > 0 to the space of tempered distributions S′ in m ∈ R, is equal to a generalized moderate
moment function ϕ( f ), for a family f � { fε} in S′(R). Moreover, if ϕ is a locally integrable
function of m, then ϕ is also generalized moment function (gmf).

Proof. Taking the Fourier transform in m we obtain

∂
∂σ
ϕ̂(ξ, σ) � −2π2ξ2ϕ̂(ξ, σ). (10.80)

For any ε > 0, and any element f̂ε in S′, there exists a unique solution ϕ̂(ξ, σ)which
coincides with f̂ε for σ � ε, and it is given by

∀σ > ε, ϕ̂(ξ, σ) � e−2π2(σ−ε)ξ2
f̂ (ξ). (10.81)

The compatibility between different choices of f̂• is: for every η, ε > 0 such that
η > ε > 0,

ϕ̂(ξ, η) � f̂η(ξ) � e−2π2(η−ε) f̂ε(ξ). (10.82)

The first statement follows by taking the inverse Fourier transform to these last two
equations. The second follows from the fact that fε(x) � ϕ(x , ε). �



Chapter 11

Grassmannian categories

11.1 Grassmannian information structures

11.1.1 Definition

Let E be a vector space over a commutative field K. A grassmannian category S
of E is defined at the level of objects by a subset of the full grassmannian Gr(E) of
vector subspaces of E, which contains E and is closed by conditional intersection,
i.e. V,W ∈ Ob S, ∃Z ∈ Ob S, Z ⊆ V, Z ⊆ W implies V ∩W ∈ Ob S. Arrows are
inclusions: V → W if and only if V ⊆ W . Such a category is a poset, having a
maximal element and conditional finite products.

For each V ∈ Ob S, we denote by EV the quotient space E/V . If V ⊆ W , we have a
canonical surjection EV → EW . This gives a covariant functor E : S→Meas if each
vector space is equipped with its Borel σ-algebra. The image C :� E (S) is a poset
with a final element 1 � {0} � E/E, and restricted products, i.e. if EZ → EV and
EZ → EW , meaning Z ⊆ V and Z ⊆ W , the arrows EV∩W → EV and EV∩W → EW are
universal factorizations of any pair of arrows to EV and EW from a common source.

Proposition 11.1. The pair (S, E ) is an information structure.

Proof. Only the property 6 in Definition 1.6 is not immediate. Consider U,V ∈
Ob S such that W � U ∧ V ∈ Ob S, and the corresponding projections πUW :
EW → EU , πVW : EW → EV ; we must prove that ι : EW → (EU , EV ), [w] 7→
(πUW ([w]), πVW ([w])) is a injection. An element w ∈ E defines a class [w] ∈ ker ι if
and only if w − 0E ∈ U and w − 0E ∈ V , thus w ∈ U ∩ V and [w] � 0. �

For each V ∈ Ob S, the objects W of S that contain V form a commutative monoid
SV for the intersection, whose neutral element is E. We denote by AV the algebra
over K which is generated by this monoid. If V′ ⊆ V , we have a natural injective
morphism jV′V : AV → AV′. This gives a canonical presheaf of commutative algebras
A overS. We are interested in the ringed topos (S,A ), and the cohomology H•S(K; V )
of certain A -modules V associated to operations on probability laws supported on
subsets of the vector spaces {EV }V∈Ob S, that defines topological invariants of these
probability laws.

The simplicial information structures studied up to now are examples of grass-
mannian structures. The full grassmannian manifold itself gives an infinite grass-
mannian category; it can be seen as the natural linear analogue of the full simplex in
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E1 � V3 � V⊥1

E3 � V1 � V⊥3

E2 � V4 � V⊥2E4 � V2 � V⊥4

Figure 11.1: Geometrical representation of the categories S2 and C2 � E (S2) from Example
11.2.

the case of finite probabilities. Other interesting examples consist of subspaces con-
taining (at least) a given subspace: in other terms, a pencil through given projective
subspaces in the projective n-dimensional space Pn(K).

Example 11.2. Set E � R2 with the standard euclidean structure, and consider the
Grassmannian category S2 made by six objects E, V1, V2, V3 V4, and 〈0〉, where the Vs
are lines through 0, such that V4, V1 and V2 make respectively an angle of π/4, π/2
and 3π/4 with V3. Each quotient Ei :� E/Vi can be identified with V⊥i , in such a way
that C2 � E (S2) is the same arrangement of lines and the map πi : E → Ei , induced
by 〈0〉 → Vi in S, is the orthogonal projection on Ei . The situation is depicted in
Figure 11.1.

Remark also that if K is a finite field, S is a concrete category in the sense of 1.1;
in fact EV corresponds to the partition of E � Ω into affine spaces parallel to V .

A grassmannian category S over the field R of real numbers or any local field of
characteristic zero, for instance C orQp , with E finite dimensional, satisfies addition-
ally Proposition 9.1, the σ-algebra BV associated to each EV being the Borel algebra
of the vector space EV , which is Polish (i.e. separable completely metrizable, which
implies second countable).

11.1.2 Measures

In what follows, because we want to study gaussian laws or some related probability
laws, we restrict ourselves to the case where K � R and E has finite dimension.

To study the probability laws supported on affine subspaces of E, we introduce
the pre-cosheaf of affine supports M over S: for V ∈ Ob S, the set MV contains all
the affine (nonempty) subspaces in EV , which corresponds by projection E � EV to
the affine subspaces of E whose direction (tangent space) is any vector space that
contains V . If V ⊆ W , the linear map πWV : EV → EW sends MV into MW .

It is useful to restrict this functor to subsets NV of MV , for V ∈ Ob S, that are
closed under the projections πWV : EV → EW . In the perspective of conditioning,
we also require that the fibers of the projections belong to NV , and that each NV
is closed by nonempty intersection. If all these conditions are satisfied, we say that
the cosheaf N is admissible or adapted. This allows us to recover the examples
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treated in Chapters 9 and 10, where the only supports considered were parallel to
the coordinate axes. The restriction to NV in MV is analog to the restriction to a set
of probabilities QX more general than the full simplex Π(X), for a variable X in a
finite information structure, cf. Chapter 1.

Definition 11.3. We say that the admissible cosheaf N is minimal if for every V ∈
Ob S and A ∈MV , the space A is contained inNV if and only if there exists W ∈ Ob S
such that V ⊆ W , and the direction (tangent space) T(A) of A in EV coincides with
W/V .1 (Such a W is necessarily unique.)

The minimal supports can be though as those “generated” by the spaces in S.
This hypothesis is verified by the full grassmannian manifold, with M � N ; by the
simplicial information structures if each NV only contains spaces that are parallel
to those generated by elements of the preferred basis; and the structure (S2 , E )
introduced in Example 11.2 if the only affine supports considered are either the full
space E, any line parallel to some Vi , or singletons.

Remark 11.4. Suppose N minimal, take A′ ∈ NV parallel to W′/V , and consider
W ∈ Ob S, then the fibers in A of the restriction of the projection πWV are parallel
to (W ∩W′)/V ; by admissibility these fibers must belong to NV . This reflects the
information axiom: the inclusions V ↪→W and V ↪→W′ imply that W ∩W′ belongs
to S.

We also introduce the set L of Lebesgue measures over the pre-cosheaf of sup-
ports: for each V ∈ Ob S, LV denotes the set of pairs (A, λ) where A ∈ MV and λ
is a positive Lebesgue measure of support exactly A. Note that the set LV (A) for a
given A ∈MV depends only of the tangent vector space T(A), and coincide with the
strictly positive coneΛ+(T(A)) in the exterior powerΛmax(T(A)). For every V ∈ Ob S
we consider the set LV as a bundle over MV , the fiber over A ⊂ EV is Λ+(T(A)),
thus this bundle is obtained by pullback from a cone bundle of rank one over the
Grassmann manifold of EV . This is a principal bundle for the multiplicative group
R∗+. Everything can be restricted over a subfunctor N of M.

11.1.3 Orthogonal embeddings

Let S be any grassmannian category of E. Choose arbitrarily an euclidean metric
Q on E. For any V ∈ Ob S the orthogonal V⊥ is a supplementary space of V in E,
then we can identify EV with the subspace V⊥ of E. Also, when V ⊆ W , we have
W⊥ ⊆ V⊥, then we can identify the quotient W/V � EV/EW with the orthogonal
W ∩ V⊥ of V in W . Therefore, when V ⊆ W , the morphism πWV : EV → EW can be
identified with the linear projection from V⊥ to W⊥ parallel to W ∩V⊥, which is the
orthogonal projection. In this way, every affine subspace A of EV is identified with
an affine subspace of E.

In summary, given the grassmannian structure (S, E ), every euclidean metric on
E gives a lift of C � E (S) into the category of orthogonal projections in E. We name
this lift the embedding of C associated to Q, denote it by JQ , and write CQ its image.

Every such embedding JQ induces ametric on every affine subspaces A of EV , and
consequently a canonical Lebesgue measure λQ(A) on A, that is λ � dx1... dxn in

1A point e ∈ EV is an affine space associated to the trivial vector space 〈0〉 and its tangent space T(e)
is taken here to be the trivial space too.
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orthonormal coordinates. Therefore the bundleL is trivializable, but not canonically
trivial.

Let us fix a metric Q on E, and consider an element A ∈ MW , we have a short
exact sequence

0→ T(A) ∩W/V → A→ πWV (A) → 0; (11.1)

Then, from Proposition F.9 (Weil’s formula), there exists a strictly positive number
c(A; W/V) such that

λA � c(A; W/V)λπWV (A).λT(A)∩W/V . (11.2)

Changing the metric Q in another metric Q′ induces the multiplication of every
measure λA by a strictly positive number ∆(A; Q ,Q′); we name this function over M
the discriminant of Q′ with respect to Q.

A multiple cQ with c > 0 gives the same embedding JQ and the same category
CQ .

Definition 11.5. A grassmannian information structure (S, E ) is said to be orthogo-
nally closedwith respect to the euclideanmetric Q on E, if V⊥ ∈ CQ implies V ∈ CQ ,
or equivalently if V ∈ Ob S implies V⊥ ∈ Ob S.

Examples of orthogonally closed gassmannian structures:
1. The full Grassmann manifold of E. The simplicial structures of the preceding

chapters, given by a basis of E. We see on this example that, given the category
CQ , the conformal structure of the metric Q is not unique in general.

2. The category C2 of Section 11.3.4 is also closed with respect to an euclidean
structure. In this example, the conformal structure of Q is unique.

For sufficiently general orthogonal closed categories the unicity of conformal struc-
ture is the rule.

11.2 Gaussian laws

11.2.1 Mean and covariance

Definition 11.6. The pre-cosheaf P : S → Sets of gaussian laws over S maps
V ∈ Ob S to the set PV of probability measures on (EV ,BV ) that have a support
A contained in MV and a gaussian density with respect to a Lebesgue measure on
A. The direct images give a covariant functor over S (affine images of gaussians are
gaussians, see Appendix D).

If we work with restricted supports N ⊆ M , we restrict the probability laws
accordingly.

Every element ρ of PV has a support A(ρ) in MV and is absolutely continuous
with respect to every Lebesgue measure λ such that (A(ρ), λ) ∈ LV . We denote by
g(ρ; λ) or gλ(ρ) the density dρ/dλ; its integral with respect to λ equals 1. The mean
M(ρ) is the point of A(ρ) ⊆ EV defined by

M(ρ) �
∫

A
X g(ρ; λ)(X)dλ(X). (11.3)
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This equation shows that the mean does not depend on any choice. The gaussian
measure ρ is defined by its mean M(ρ) and by a covariance Σρ, which is the inverse
of the bilinear map −D2

X ln g(ρ; λ)(X). Choosing an euclidean metric on A, the
covariance is expressed by a symmetric matrix of rank dim(A), which is positive
definite.

More precisely, there exist a nondegenerate symmetric positive bilinear form B on
T :� T(A)—which defines an element element of the symmetric power S2(T∗)—such
that, if we choose a point N in A, there exist a constant CN and a linear form LN that
verify, for every x ∈ A,

ln g(x) � −1
2

B(x − N, x − N) + LN(x − N) + CN . (11.4)

where g :� g(ρ; λ). The rule x 7→ d ln gx defines a map from A to T∗, characterized
by

∀X ∈ T, d ln g(x).X � −B(x − N,X) + LN(X). (11.5)

It can be differentiated again in a canonical way to obtain

Dd ln gx(X,Y) � −B(Y,X) � −B(X,Y), (11.6)

that is an element of S2(T∗). SinceB is nondegenerate, themap β : T → T∗, x 7→ B(x , ·)
is invertible and the covariance is the symmetric bilinear form Σ (on T∗) induced by
σ � β−1 : T∗ → T; we write Σ � B−1. The previous considerations show that Σ does
not depend on N , which vanishes under differentiation.

Moreover, the covariance does not depend on the choice of reference measure: if
we change the Lebesgue measure λ on T(A) (or A) in λ′ � Cλ for C > 0, we change
g in g′ � g/C, then ln g′ � ln g − C, thus d ln g is unchanged and we have Σ′ � Σ.

Nevertheless, the trace and the determinant of Σ, which appear in many formu-
las of probability theory, do change. They are not invariants of a bilinear form on
T � T(A) but of an endomorphism of T. In fact, the only invariant of a nondegen-
erate symmetric positive bilinear form is the dimension of T, equal to its rank (cf.
Sylvester’s law of inertia).

Every linear isomorphism from T∗ to T is enough to define Tr(Σ) and det(Σ),
which explains why this problem has not arisen up to this point.

A Lebesgue measure is sufficient for defining det(Σ): the measure λ defines a
basis of Λmax(T∗) then a dual basis of Λmax(T), and detλ(Σ) is the matrix of Λmax(Σ)
in these basis. Changing λ in Cλ, changes the dual basis in λ−1/C, then detλ′(Σ)
equals C+2 det(Σ). We will recover that when studying the entropy of gaussian laws.

Remark 11.7. In other terms, Σ belongs to the symmetric power S2(T), and the
functorΛmax gives an elementΛmaxΣ in S2(ΛmaxT)which is equal toΛmaxT ⊗ΛmaxT.
Taking a basis λ−1 of ΛmaxT, the determinant detλ Σ is the coordinate of ΛmaxΣ in
the basis λ−1 ⊗ λ−1 of S2(ΛmaxT), and changing the basis λ−1 of ΛmaxT into C−1λ−1

multiply the coordinate in S2(ΛmaxT) by C2.

The trace is a linear form on End(E) � E∗ ⊗ E induced by the canonical pairing
E∗ ⊗ E → C, (x∗ , x) 7→ x∗(x) [13, Sec. II.4.3]. To introduce the trace of a bilinear
form B ∈ T∗ ⊗ T∗, we need an isomorphism between T and T∗, that turns B into an
element of T∗ ⊗ T. Such duality may come from an euclidean metric Q (a positive
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definite symmetric bilinear form): we choose an orthonormal basis, and take the
matrix associated to Σ in this basis, then TrQ(Σ) is the usual trace of this matrix, that
is the sum of the coefficients along the diagonal; in particular, an appropriate choice
of basis diagonalizes Σ and the trace then corresponds to sum of the principal values
of Σwith respect to Q [13, Sec. II.10.11].

Choosing a Lebesgue measure on the affine subspace A ⊆ EV , the gaussian law
ρ of support A, mean M ∈ A and covariance Σ ∈ S2(T) is given by

∀x ∈ A,
dρ
dλ
(x) � ρλ(x) �

1√
detλ(2πΣ)

e−
1
2Σ
−1(x−M,x−M). (11.7)

The data of the mean is equivalent to the data of the linear part LN in the equation
(11.5). The nondegeneracy of B or Σ � B−1 implies the existence of a unique point
M, such that, for every x ∈ A,

B(x − N,N −M) � LN(x − N). (11.8)

This implies

B(x − N, x − N) + LN(x − N) + CN � B(x −M, x −M) + CM , (11.9)

for the constant CM given by

CM � CN −
1
2

B(N −M,N −M); (11.10)

The fact that
CM � −1

2
ln(detλ(2πΣ)), (11.11)

follows from the celebrated Gauss formula.

11.2.2 Moments of order two

Definition 11.8. Let N be a point in A(ρ) and a positive symmetric bilinear form B′

on T(A), the associated moment of order two of ρ is defined by

Φ2(ρ; B′,N) � Eρ(B′(x − N, x − N))

�

∫
A

B′(x − N, x − N)gλ(ρ)(x)dλ(x). (11.12)

Remark 11.9. The change of variables Y � x − N identifies A with T(A), without
changing the Lebesguemeasure; this gives the following expression for the moment:

Φ2(ρ; B′,N) �
∫

T(A)
B′(Y,Y)gλ,N(ρ)(Y)dλ(Y); (11.13)

where gλ,N(ρ)(Y) � gλ(ρ)(Y + N) is the density of the image probability.

Remark 11.10. For a general probability law which is absolutely continuous with
respect to λA, it could happen that the mean is not defined, but the moment of order
two is always defined if we accept the value +∞ in R, because the integrand is a
positive function.
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Proposition 11.11. Let Q be an euclidean metric on A, and ρ the gaussian measure of
support A having the mean M ∈ A and the covariance Σ, then

Φ2(ρ; Q ,M) � TrQ(Σ). (11.14)

Proof. Let us choose an orthonormal basiswith respect toQ such thatΣ is represented
by diagonal matrix; taking the square roots of the diagonal coefficients, we obtain
a diagonal matrix that defines the unique positive square root Σ1/2. Let λ be the
Lebesgue measure associated to Q. Then,

Φ2(ρ; Q ,M) � 1√
detλ(2πΣ)

∫
A

Q(x −M, x −M)e− 1
2Σ
−1(x−M,x−M) dλ(x). (11.15)

If we make the change of variables

Y � Σ−1/2(x −M), (11.16)

we get

Φ2(ρ; Q ,M) � (2π)−d(A)/2
∫

T(A)
‖Σ1/2Y‖2e−

1
2 ‖Y‖2 dy. (11.17)

Note d � d(A) and σ1 , ..., σd the spectral values of Σ counted with their multiplicity,
we have

‖Σ1/2Y‖2 � σ1 y2
1 + ... + σd y2

d . (11.18)

Thus, using Fubini’s theorem and the formula for the one dimensional reduced
moment, we get

Φ2(ρ; Q ,M) �
d∑

i�1
(2π)−d/2

∫
Rd
σi y2

i e−
1
2 ‖Y‖2 dy1 · · · dyd

�

d∑
i�1
(2π)−1/2

∫
R
σi y2

i e−
1
2 y2

i dyi

�

d∑
i�1

σi � TrQ(Σ);

which is the expected result. �

Corollary 11.12. Let Q be an euclidean metric on A, and ρ the gaussian measure of support
A, of mean M ∈ A and covariance Σ, and let N be any point in A,

Φ2(ρ; Q ,N) � Q(M − N,M − N) + TrQ(Σ). (11.19)

Proof. Let us decompose x − N � x −M + M − N , then

Q(x − N, x − N)
� Q(x −M, x −M) + Q(M − N,M − N) + 2Q(x −M,M − N). (11.20)

And the linear term in x−M disappearswhenwe integrate because M is themean. �
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In our grassmannian setting, we dispose of more structure: the support A is
included in a vector space EV , and the probability law is attached to this space EV ,
thus for every positive symmetric bilinear form BV on EV , we can define the moment
of ρ ∈PV , for BV , without choosing N :

Φ2(ρ; B) � Eρ(B(X,X)) �
∫

A
BV (X,X)gλ(X)dλA(X). (11.21)

Corollary 11.13. For any gaussian law ρ ∈PV and any euclidean metric QV on EV ,

Φ2(ρ; Q) � ‖M(ρ)‖2V + TrQ |A(Σ(ρ)). (11.22)

Proof. For X ∈ A, we have

QV (X,X) � QV (X −M + M,X −M + M) (11.23)
� QV (X −M,X −M) + 2QV (M,X −M) + QV (M,M) (11.24)
� Q |A(X −M,X −M) + L(X −M) + ‖M(ρ)‖2V ; (11.25)

where L is a linear form on T(A). By applying the proposition 6, we get

Eρ(Q |A(X −M,X −M) � TrQ |A(Σ(ρ)). (11.26)

By the normalization of any probability law

Eρ(‖M(ρ)‖2V ) � ‖M(ρ)‖2V . (11.27)

And by definition of the mean

Eρ(L(X −M)) � 0. (11.28)

The corollary follows by addition. �

Remark 11.14. Between themomentsΦ(ρ; Q), for Q defined on EV , and themoments
Φ2(ρ; QA ,N), where Q |A is defined on T(A), the link is

Φ2(ρ; Q) � Φ2(ρ; Q |A ,N) + 2Eρ(x 7→ Q(x − N,N)) + Eρ(x 7→ Q(N,N)) (11.29)
� Φ2(ρ; Q |A ,N) + 2Q(M(ρ) − N,N) + Q(N,N), (11.30)

thus
Φ2(ρ; Q |A ,N) � Φ2(ρ; Q) − 2Q(M(ρ),N) + Q(N,N). (11.31)

11.3 Gaussian modules

In this section, we characterize the information cohomology when the coefficients
are measurable functionals of gaussians laws.
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11.3.1 Module of moderate functionals

Definition 11.15. The presheaf of moderate functions F : S→ Sets maps V ∈ Ob S
to the set FV of measurable functions on PV that are of moderate growth (i.e.
bounded by a polynomial) in the mean variable M(ρ), cf. condition 9.24.2

Note that an element Φ ∈ FV can be seen as a function Φ(g , λ) satisfying the
equivariance relation

∀C > 0, Φ(g/C, Cλ) � Φ(g , λ). (11.32)

Let V ⊆ W be a pair of objects of S (interpreted as random variables with values
in EV and EW , respectively), and A an element of MV ; the map πWV : EV → EW
induces an affine projection π from A onto B � πWV (A), the fiber can be identified
with K � T(A) ∩ W/V . Let us choose a Lebesgue measure λ on A, a Lebesgue
measure µ on B and define the Lebesgue measure ν on K by λ � µ.ν, cf. Weil’s
formula (Proposition F.9). Consider ρ ∈PV , described by λ of support A(ρ) and the
density g; for every y ∈ B � πWV (A), we define the conditioned measure ρ |W�y by
its support, which is the affine subspace Ay :� { x ∈ A | πWV (x) � y } of A, and by its
density with respect to νy corresponding to ν, which is defined as

g(ρ |W�y ; νy) �
g(ρ; λ)|Ay

g(πWV
∗ ρ; µ)(y)

. (11.33)

If we replace λ by CAλ and µ by CBµ, the measure ν is replaced by (CA/CB)ν, the
density g(ρ; λ) changes into g(ρ; CAλ) � g(ρ; λ)/CA, and the density g(πWV

∗ ρ; µ)(y)
into g(πWV

∗ ρ; µ)(y)/CB, hence the new conditional density is

g(ρ |W�y ; νy)/CA

g(πWV
∗ ρ; µ)(y)/CB

� g(ρ |W�y ; (CA/CB)νy). (11.34)

Therefore, the probability ρ |W�y itself is independent of the choices of the Lebesgue
measures on A and B.

Due to the growth condition, the following integral is well defined:

(W.Φ)(ρ) :�
∫

B
Φ(ρ |W�y)dπWV

∗ ρ(y). (11.35)

Proposition 11.16. Equation (11.35) turns the presheaf F into an A -module.

Proof. Let ρ be an element of PV with support A � A(ρ), and W,W′ two elements of
S containing V (we denote the corresponding random variables by the same letters).
By definition,

W.(W′.Φ)(ρ) �
∫

B

(∫
B′y
Φ((ρ |W�y)|W′�y′)dπW′V

∗ ρ |W�y(y′)
)

dπWV
∗ ρ(y). (11.36)

2Remark that every element of PV is associated to a support. This must be seen as the appropriate
generalizations of the pairs (λ, ρ) considered in the simplicial case: in that context, therewas a preferred
Lebesgue measure on each support.
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The law ρ |W�y is supported on Ay :� { x ∈ A | πWV (x) � y }, thus (ρ |W�y)|W′�y′ is
supported on Ay ,y′ :� { x ∈ Ay | πW′V (x) � y′ } � Ay ∩ Ay′. Set U :� W ∩W′ and
let r : EW × EW′ → EU be a section of the inclusion ι : EU → EW × EW′ (such that
r ◦ ι � idEU ); as long as Ay ,y′ is nonempty, the value of r(y , y′) is uniquely defined: it
is the only element in (πWU)−1(y) ∩ (πW′U)−1(y′) such that

Ay ,y′ � Ay ∩ Ay′ � (πWV )−1(y) ∩ (πW′V )−1(y′) � (πUV )−1(r(y , y′)). (11.37)

We choose a measure λ on A and µ on B � πWV (A), inducing through Weil’s
formula a measure νy on the fiber Ay , parallel to T(A) ∩W/V ; we have λ � µ.νy .
Similarly, a choice of Lebesguemeasure µ′y on the affine space B′y � πW′V (Ay) induces
a measure θy ,y′ on Ay ,y′ such that νy � µy .θy ,y′. Finally, let us choose a Lebesgue
measure µ̃ on B̃ � πUV (A), such that λ � µ̃.θy ,y′ � µ̃.θr(y ,y′).

By definition, the law (ρ |W�y)|W′�y′ has density

g((ρ |W�y)|W′�y′; θy ,y′) �
g(ρ |W�y ; νy)|Ay ,y′

g(πW′V
∗ ρ |W�y ; µ′y)(y′)

(11.38)

�

g(ρ; λ)|Ay ,y′

g(πWV
∗ ρ; µ)(y)g(πW′V

∗ ρ |W�y ; µ′y)(y′)
. (11.39)

In virtue of Proposition 9.6,

g(πW′V
∗ ρ |W�y ; µ′y)(y′) �

∫
Ay

g(ρ |W�y ; νy)dθy ,y′ �

∫
Ay

g(ρ; λ)|Ay

g(πWV
∗ ρ; µ)(y)

dθy ,y′

(11.40)
which implies that

g(πWV
∗ ρ; µ)(y)g(πW′V

∗ ρ |W�y ; µ′y)(y′) �
∫

Ay∩Ay′
g(ρ; λ)dθy ,y′ (11.41)

� g(πUV
∗ ρ; µ̃)(r(y , y′)) (11.42)

again by Proposition 9.6.
Recapitulating, we have that (ρ |W�y)|W′�y′ has density

g(ρ; λ)|(πUV )−1(r(y ,y′)/g(πUV
∗ ρ; µ̃)(r(y , y′)),

which means that it equals ρ |U�r(y ,y′).
Coming back to (11.36), we have

W.(W′.Φ)(ρ) �
∫

B

(∫
B′y
Φ(ρ |U�r(y ,y′))g(πUV

∗ ρ; µ̃)(r(y , y′))dµ′y(y′)
)

dµ(y). (11.43)

where we have derived the probability laws w.r.t. the reference measures and
simplified the densities as in (11.42). By functoriality, B � πWU(B̃) and if we set
B̃y � (πWU)−1(y), its projection under πW′U is exactly B′y , where we have chosen µ′y
as measure. Using again Weil’s formula, there exists a measure ν̃ on B̃y such that
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µ̃ � ν̃y .µ, and also a measure ψ on {r(y , y′)} (i.e. a constant) such that ν̃y � µ′y .ψ.
Thus, we can rewrite the previous integral as

W.(W′.Φ)(ρ) �
∫

B̃
Φ(ρ |U�u)g(πUV

∗ ρ; µ̃)(u)ψ−1 dµ̃(u) (11.44)

�

∫
B̃
Φ(ρ |U�u)ψ−1 dπUV

∗ ρ(u). (11.45)

Finally, remark that Φ ≡ 1 is always invariant under the action, so ψ � 1. �

The preceding result generalizes Proposition 9.21 concerning the simplex.

11.3.2 Description of cochains and cocycles

Having this A -module F , we introduce the information cohomology H•(S,F ) :�
Ext•(R, F). Using the bar resolution B• of R, we obtain the following description of
cochains, cocycles and coboundaries, as explained in Chapter 2.

The zero cochains are elements ϕV of FV for V describing A , that are natural,
i.e.

∀ρ ∈PV ϕW (πWV
∗ ρ) � ϕV (ρ), (11.46)

which implies they are constant in virtue of the final element V � E. They are also
cocycles, i.e. invariant of the action of A .

Since B1(V) is generated by { [W] |V ⊂ W }, the 1-cochains ϕ ∈ Hom(B,F ) are
characterized by elements {ϕV [W]}V⊆W of FV such that

∀ρ ∈PV , ∀W ⊇ V′ ⊇ V, ϕV′[W](πV′V
∗ ρ) � ϕV [W](ρ). (11.47)

In particular, if V ⊆ W , for any ρ ∈PV ,

ϕV [W](ρ) � ϕW [W](πWV
∗ ρ). (11.48)

then the elements ϕV [V] �: ΦV determine all the other elements.
The equations for the degree one cocycles are

∀V ∈ Ob S, ∀W ⊇ V,W′ ⊇ V, ϕV [W ∩W′] � W.ϕV [W′] + ϕV [W]. (11.49)

From the equations of naturality (11.47), this is equivalent to the smaller set of
equations:

∀W,W′ ∈ A ,W ∩W′ �: V ∈ A , ∀ρ ∈PV ,

ϕV [V](ρ) � W.ϕV [W′](ρ) + ϕW [W](πWV
∗ ρ). (11.50)

11.3.3 Dirac distributions and parallelism

The following results are crucial in all the cohomological computations.

Lemma 11.17. Let Φ be a 1-cocycle, then for every V ∈ Ob S and every point a ∈ EV , we
have

ΦV (δa) � 0. (11.51)
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Figure 11.2: Translation of affine supports in Proposition 11.18. Each quotient E/U has been
identified with the corresponding orthogonal complement U⊥.

Proof. Write the cocycle equation for W � W′ � V and the law ρ � δa on EV , in order
to get

Φ(δa) � Φ(δa) +Φ(δa). (11.52)

�

Proposition 11.18. Let Φ be a 1-cocycle. If for every V ∈ Ob S and A ∈ MV , there exists
W ∈ Ob S such that V ⊂ W and T(A) ∩W/V � 0, then

ΦV (ρA) � ΦV ((Tw)∗ρA) � ΦW (πWV
∗ ρA) (11.53)

for any law ρA with support A, where Tw denotes the translation by a vector w ∈ W/V , i.e.
Tw(x) � x + w.

In particular, if for any A′ parallel to A (i.e. T(A) � T(A′)) there exists a space
W and a vector w ∈ W/V such that A′ � A + w, the restrictions of Φ to the sets of
probability that have supports in A and A′ are identified through (Tw)∗.

Proof. Apply the cocycle equation (11.50) with W′ � V . We evaluate it on a probabil-
ity law ρA supported on A and on (Tw)∗ρA supported on A+w ⊂ EW . Both supports
are projected by π :� πWV to the same affine subspace B of EW . Let My be the unique
point of A such that π(My) � y for y ∈ B. The situation is depicted in Figure 11.2.
The 1-cocycle condition becomes

ΦV (ρA) � Eπ∗ρ
(
y 7→ ΦV (δMy )

)
+ΦW (π∗ρA) � ΦW (π∗ρA). (11.54)

and similarly ΦV ((Tw)∗ρA) � ΦW (π∗(Tw)∗ρA) � ΦW (π∗ρA), because both laws just
differ by a translation of the mean that vanishes on EW .

�

If the category C is orthogonally closed for a metric Q and if the cosheaf of
supports is minimal, the hypothesis in the previous proposition is always satisfied
(there is a space W′ such that T(A) is W′/V and its orthogonal complement gives the
required W). This happened in the simplicial case.

IfS is the full grassmannian structure, Proposition 11.18 immediately implies that
cocycles are independent of the mean, since there is no preferred way to translate A



Grassmannian categories 183

into T(A). On the contrary, in the simplicial case there is a canonical way to identify
the mean of ρ and its translated version.

If the condition in Proposition 11.18 is not verified, we could directly impose this
invariance by translation of the cochains to develop a cohomology theory that is not
less interesting.

11.3.4 Axial cocycles over S2

In this section, we consider the information structure (S2 , E ) introduced in Example
11.2 and depicted in Figure 11.1. This structure has been embedded in R2 with
the usual Euclidean metric. Let (e1 , e3) and (e2 , e4) denote orthonormal bases with
coordinate axes (E1 , E3) and (E2 , E4), respectively. The change of coordinates between
(x1 , x3) and (x2 , x4) is given by

x2 �
x1 + x3√

2
x4 �

x3 − x1√
2

, x1 �
x2 − x4√

2
, x3 �

x2 + x4√
2

. (11.55)

For the dual coordinates {ξi}i�1,...,4, the formulas are the same, by unitarity. Then
the covariance matrices change accordingly as

σ22 �
σ11 + σ33

2
+ σ13 , σ44 �

σ11 + σ33
2

− σ13 , σ24 �
σ33 − σ11

2
. (11.56)

Let Φ � {φV ∈ FV }V∈Ob S2 be the data characterizing a 1-cochain; each φV is
a function from PV � PV (NV ) to R, that can be restricted to the nondegenerate
laws supported on EV to get φn g

V (which is analogous to φS is the previous chapter).
We further simplify the notation writing φ :� φ〈0〉 and φi :� φVi ; the function φE
vanishes since the associated space EE is a singleton (cf. Lemma 11.17).

We suppose that Φ defines a 1-cocycle that is axial (see Section 10.3.3) with respect to
(E1 , E3), which means that φ〈0〉 � ϕ1 + ϕ3, with ϕ1, ϕ3 generalized moments defined
on R×]0,∞[. We shall see that ϕ1 and ϕ3 must be the constants and coincide. To do
so, write the cocycle relation φ � V4.φ2 + φ4, in the case of a Gaussian distribution
with mean M � (m1 ,m3) along E1 , E3 and a covariance matrix Σ that has principal
axis E2 , E4 with respective coefficients τ2 , τ4:

φ(ρ(M,Σ)) �
∫
φ2(M2(x4),Σ2)G4(x4)dx4 + φ4(G4(m4 , τ4)). (11.57)

Due to the choice of Σ, we have M2 � m2 and Σ2 � τ2, therefore

Φ(M,Σ) � φ2(m2 , τ2) + φ4(m4 , τ4). (11.58)

Substituting m4 � (m3 − m1)/
√

2, m2 � (m1 + m3)/
√

2, σ11 � (τ2 + τ4)/2 and σ33 �

(τ2 + τ4)/2, we obtain

ϕ1(m1 , (τ2 + τ4)/2) + ϕ3(m3 , (τ2 + τ4)/2)
� φ2((m1 + m3)/

√
2, τ2) + φ4((m3 − m1)/

√
2, τ4). (11.59)

Lemma 11.19. Let f , g, h be three differentiable functions of a real variable s ∈]0,∞[
satisfying ∀s , t > 0, f (s) + g(t) � h(s + t), then f , g and h are affine functions of the
same slope.
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Proof. When differentiating with respect to s or t, we find

f ′(s) � h′(s + t) � g′(t); (11.60)

therefore, there exists a constant D such that f ′ � g′ � h′ � D, and three constants
A, B, C such that f (s) � Ds + A, g(s) � Ds + B, h(s) � Ds + C. �

Lemma 11.20. The only possible nonzero axial cocycles of (S2 , E ) are linear combinations of
constants, of the mean coordinates and of the moment of order two; more precisely, there exist
constants A1, A3, B1, B3, and D such that ϕi(m , σ) � D(m2

i + σii) + Ai mi + Bi , for i � 1
and 3. The conclusion of the lemma holds also true for φn g

2 and φn g
4 , with the same constant

D.

Proof. Let us fix arbitrarily m1 and m3, and consider (11.59) as a functional equation
of four functions in τ2 , τ4. From the preceding lemma, we deduce the existence of
four functions C(m1 ,m3), B(m1 ,m3), B2(m1 ,m3), and B4(m1 ,m3) such that

ϕ1(m1 , σ) + ϕ3(m3 , σ) � 2D(m1 ,m3)σ + B(m1 ,m3), (11.61)

φ
n g
2 ((m1 + m3)/

√
2, τ) � D(m1 ,m3)τ + B2(m1 ,m3), (11.62)

φ
n g
4 ((m3 − m1)/

√
2, τ) � D(m1 ,m3)τ + B4(m1 ,m3), (11.63)

which in turn implies that

∂φ
n g
2 ((m1 + m3)/

√
2, τ)

∂τ
� D(m1 ,m3) �

∂φ
n g
4 ((m1 − m3)/

√
2, τ)

∂τ
. (11.64)

Therefore D is at the same time a function of m1 +m3 and a function of m1 −m3, thus
it is a constant D. Consequently, (11.61) becomes

∂ϕ1(m1 , σ)
∂σ

+
∂ϕ3(m3 , σ)

∂σ
� 2D. (11.65)

Differentiating with respect to m1 (resp. m3) we obtain the existence of two constants
D1 ,D3 such that

∂ϕ1(m1 , σ)
∂σ

� D1 ,
∂ϕ3(m3 , σ)

∂σ
� D3 , (11.66)

hence D1+D3 � 2D by 11.65. The generalizedmoment functions ϕ1, ϕ3 are solutions
of the heat equation (Section 10.3.4), so we also know that

1
2
∂2ϕ1(m , σ)

∂m2 � D1 ,
1
2
∂ϕ3(m , σ)
∂m2 � D3. (11.67)

Therefore ϕ1 and ϕ3 are both moments of order two. This gives

ϕ1(m , σ) � D1(m2
+ σ) + A1m + B1 , (11.68)

ϕ3(m , σ) � D3(m2
+ σ) + A3m + B3. (11.69)
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Using equation (11.59), we deduce that, for every m2 ,m4 in R and τ2 , τ4 in R∗+,

φ
n g
2 (m2 , τ2) + φn g

4 (m4 , τ4) � D1

[(
m2 + m4√

2

)2

+

( τ1 + τ2
2

)]
+ A1

(
m2 + m4√

2

)
+ B1

+ D3

[(
m2 − m4√

2

)2

+

( τ1 + τ2
2

)]
+ A3

(
m2 − m4√

2

)
+ B3

�
D1 + D3

2
(m2

2 + m2
4 + τ2 + τ4) + (D1 − D3)m2m4

+

(
A1 + A3√

2

)
m2 +

(
A1 − A3√

2

)
m4 + B1 + B3. (11.70)

in such a way that ∂m2φ
n g
2 (m2 , τ2) contains a term (D1 − D3)m4 that must vanish,

implying that D1 � D3 � D. Equation (11.70) also entails the existence of constants
A2 ,A4 , B2 , B4 such that

φ
n g
2 (m2 , τ) � D(m2

2 + τ)+ A2m2 + B2 , φ4(m4 , τ) � D(m2
4 + τ)+ A4m4 + B4. (11.71)

In particular all the moments of degree two have the same coefficient. �

Consequently, for any nondegenerate gaussian law ρ on E, with mean M of
coordinates (m1 ,m3) and covariance Σ of coefficients {σi j}i , j∈{1,3} in the basis (e1 , e3),
or (m2 ,m4) and {σi j}i , j∈{2,4} in the basis (e2 , e4),

φn g(ρ) � D(m2
1 + m2

3 + σ11 + σ33) + A1m1 + A3m3 + B1 + B3

� D(m2
2 + m2

4 + σ22 + σ44) + A2m2 + A4m4 + B2 + B4. (11.72)

Then
α(M) � A1m1 + A3m3 � A2m2 + A4m4 , (11.73)

defines a linear form, and we have

φn g(ρ) � DΨ2(M,Σ) + α(M) + β, (11.74)

with
Ψ2(M,Σ) � ‖M‖2 + Tr(Σ) (11.75)

and
β � B1 + B3 � B2 + B4. (11.76)

Lemma 11.17 says that each function φ or φi vanishes on laws supported on
points. Hence it only remains to characterize φn g for degenerate laws supported
on lines contained in E, which is related to their projection on lines that intersect
transversely their support, as stated in Proposition 11.18. The compatibility between
these values is only possible if D and α vanish.

Proposition 11.21. The only nonzero axial cocycles over (S2 , E ) correspond to collections of
functions (φ, φ1 , φ2 , φ3 , φ4) from the possibly degenerate gaussian laws on the corresponding
spaces E, E1 , E2 , E3 , E4 into R, given by

φi(ρ) � B dim(Aρ), (11.77)

where B is any real constant, and Aρ is the support of ρ.
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Proof. A degenerate gaussian supported by the axis E4 is the measure

dρ(x2 , x4) � δ(x2 � 0) ⊗ 1√
2πσ44

e−
(x4−m4)2

2σ44 dx4. (11.78)

with σ44 > 0. Since both V3 and V4 are transversal to E4 � A(ρ) (cf. Figure 11.1),
Proposition 11.18 implies that

φ(ρ) � φ3(πV3〈0〉
∗ ρ) � φ4(πV4〈0〉

∗ ρ). (11.79)

First, we compute the term φ3(πV3〈0〉
∗ ρ). The map πV3〈0〉 is the orthogonal projec-

tion3 E→ E3 ' E/V3. We have

dπV3〈0〉
∗ ρ(x3) �

1√
2πσ33

e−
(x3−m3)2

2σ33 dx3. (11.80)

where m3 � m4/
√

2 under the change of coordinates (11.55), and σ33 is given by
(11.56). We have

σ33 � σ11 , σ44 � 2σ11 , σ13 � −σ11. (11.81)
Since we are supposing that the cocycle is axial, φn g

3 � ϕ3 as determined in the
previous proposition:

φ3(πV3〈0〉
∗ ρ) � D(m2

3 + σ33) + A3m3 + B3. (11.82)

In turn, the law πV4〈0〉
∗ ρ is the gaussian supported on E4 with mean m4 and

variance σ44 > 0. Proposition 11.20 gives the formula for φn g
4 , so

φ(ρ) � D(m2
4 + σ44) + A4m4 + B4 � 2D(m2

3 + σ33) + A4m4 + B4 , (11.83)

where we use m4 � m3
√

2.
The second equality in (11.79) reads

2D(m2
3 + σ33) + A4m3

√
2 + B4 � D(m2

3 + σ33) + A3m3 + B3 , (11.84)

that is
D(m2

3 + σ33) � (A3 −
√

2A4)m3 + B3 − B4 , (11.85)

which is possible if and only if D � 0,
√

2A4 � A3 and B4 � B3.
However, we have by coordinate changes,

√
2A4 � A3 − A1, then A1 � 0. In the

same manner, turning the axis we have A3 � 0, and B2 � B1. Consequently α � 0.
And by symmetry with respect to E4, exchanging E1 and E3, we find B1 � B3 � B2 �

B4 � B.
This shows that for every gaussian with linear support parallel to one of the lines

E j , the value of the cocycle is B, from (11.72) it is 2B for a nondegenerate law with
support E, and 0 for the laws supported by a point. �

In the proposition above the fact that the angles between E1 and E2 (resp. between
E3 and E4) is π/4 has no importance, it is only for simplifying the formulas, any other
angle strictly between 0 and π/2 works as well.

3The isomorphism between E3, a subspace of E, and the quotient E/V3 is not canonical; it comes,
however, as part of the definition of E (embedded in R2) and the advantage is that we can use the
formulae for gaussians on affine subspaces as presented in Appendix D .
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11.3.5 Entropy

Definition 11.22. If ρ ∈ PV has its support equal to A ⊆ EV of dimension d, and if
λ is chosen in LA � LT(A), the entropy is defined by

SV (g , λ) � Eρ
(
− ln

dρ
dλ

)
. (11.86)

Introducing the mean and the covariance, this gives

SV (g , λ) �
(2π)−d/2
√

detλ Σ

∫
A

1
2
Σ−1(x −M, x −M)e− 1

2Σ
−1(x−M,x−M) dλ(x)

+
1
2

ln detλ Σ +
d
2

ln 2π. (11.87)

Changing the variable by x −M �
√
Σy shows that the first term to the right is equal

to d/2, thus
SV (g , λ) �

1
2

ln detλ Σ +
d
2

ln(2πe). (11.88)

Definition 11.23. For ρ ∈ PV , let us denote by d(ρ) the dimension dim(A(ρ)) of its
support.

Proposition 11.24. d is a 1-cocycle for the cohomology with coefficients in F .

Proof. This is a consequence of the rank theorem: for V,W ∈ Ob S, W ⊇ V , we
consider the restriction of the projection π � πWV to A(ρ), it induces a surjective
linear map from T(A) to the tangent of the support B of π∗ρ, and the kernel of this
map is precisely the tangent space of the support of any one of the conditioned
probabilities ρ |π(x)�y . The theorem says that

d(ρ) � Eπ∗ρ(d(ρ |π(x)�y)) + d(π∗ρ). (11.89)

�

By subtracting the multiple d
2 ln(2πe) from S we get the normalized entropy S,

which is a function of detλ Σρ only. A change from λ to λ′ � Cλ induces the addition
of log C to S̄V (ρ, λ), because detλ′ Σ � C2 detλ Σ, as we saw in Section 11.2.1. So S̄ is
not a cochain for the coefficients F introduced in Section 11.3.1, which motivates the
following definition.

Definition 11.25. Let (S, E ) be a grassmannian information structure on the vector
space E. Recall that an euclidean metric Q induces an identification of each quotient
E/V with V⊥, for each V ∈ Ob S. Every affine subspace A ⊂ E/V embeds into
E and inherits from Q a Lebesgue measure λQ(A), see Section 11.1.3. The twisted
functional space X is the vector space of real-valued functions φ of a probability
measure ρ on EV and metric trivialization λQ of LV that verify

∀ρ ∈PV , ∀Q ,Q′ euclidean metrics on E,
φ(ρ, λQ′) � φ(ρ, λQ) + ln D(T(Aρ); Q ,Q′). (11.90)
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where D(B; Q ,Q′) is an R∗+-valued function, called generalized discriminant, that is
required to satisfy D(B; Q ,Q′)D(B; Q′,Q′′) � D(B; Q ,Q′′) for any triplet of euclidean
metrics Q ,Q′,Q′′ and any vector space B ⊂ EV .

For every morphism ι : V → W in S, there is a an induced map ι∗ : XW → XV
that maps φW ∈ XW to φV � ι∗(φW ) given by

φV (ρ, λQ) � φW (π∗ρ, λQ). (11.91)

We can see that the sheaf F of moderate probabilistic functionals is included in
X , corresponding to D ≡ 1. The typical generalized discriminant D(A; Q ,Q′) that
we have in mind is a product of the discriminants ∆(B; Q ,Q′) introduced in Section
11.1.3 or their inverses, where B can range over certain projections of A that are
independent of ρ, as is the case in formula (11.91).

Remark 11.26 (Sections of principal bundles). The previous definition is also moti-
vated by the following considerations.

For every V ∈ Ob S we have defined the bundle LV of Lebesgue measures on
the supports in MV , and verified that it is a principal bundle for the multiplicative
group R∗+ over each stratum of the total Grassmannian. For each A ∈MV , the fiber is the
positive cone Λ+(T(A)) ⊂ Λmax(T(A)).

Given a G-principal bundle P, and a left G action τ : G × F→ F on a manifold F,
there is G-bundle with fiber F defined as P ×τ F :� P × F/∼, where the relation ∼ is
given by

∀(p , f ) ∈ P × F, ∀g ∈ G, (p , f ) ∼ (p.g , τ(g−1) f ). (11.92)

Let τa be the action of R∗+ on R given by R∗+×R→ R, (c , r) 7→ a log c + r. The general
theory of principal bundles (cf. [80, p. 39]) tells that sections of the bundle LV ×τa R
are identified canonically with maps φ from the total space LV to R such that

∀(B, λ) ∈ LV , ∀C > 0, φ(B, Cλ) � φ(B, λ) − a ln C. (11.93)

A section of LV ×τa R defines, by precomposition with the function A : PV →MV
that associates to each probability ρ its support A(ρ), a function φ on PV that is
equivariant in the sense of (11.93). Under this point of view, S̄ is associated to τ−1.

Lemma 11.27. The formula (11.35) defines a structure of A -module on the sheaf of vector
spaces X .

Proof. Let ι : V →W be an arrow in S, and φ an element of XV . We prove that W.φ
also belongs to XV . In fact,

(W.φ)(ρ, λQ′) �
∫

A(ι∗(ρ)
φ(ρ |W�w , λQ′)dι∗ρ(w)

�

∫
A(ι∗(ρ)

(φ(ρ |W�w , λQ) − ln D(T(A(ρ |W�w)); Q ,Q′))dι∗ρ(w)

� (W.φ)(ρ, λQ) − ln D(T(A) ∩W/V ; Q ,Q′).

The proof of W′.(W.φ) � (W′W).φ given for Proposition 11.16 remains valid. �

Proposition 11.28. The normalized entropy S̄ is 1-cocycle when the coefficients are X .
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Proof. This can be proved in a more general setting, using properties of disintegra-
tions, see Proposition 11.35. However, a direct proof shows an interesting connection
with pure algebra and the beginnings of K-theory.

We have already seen that detλ Σ gives a section of X : when a metric Q is
changed into Q′, the measure λQ(A) is multiplied by the discriminant ∆(A; Q ,Q′) �
∆(T(A); Q ,Q′); the covariance Σ remains the same, but its determinant changes by a
factor of ∆(A; Q ,Q′)2.

Only the cocycle equation has to be verified, for a given choice of Q that induces
an embedding JQ . For that we use the formulas in Appendix D, computing the
covariance of the direct image and the conditioned probability of a gaussian law. We
work in the space T(A) and the restriction of the projection π � πWV (that under JQ
becomes the projection on a subspace of T(A)): if

Σ(ρ) �
(
Σ11 Σ12
Σ21 Σ22

)
(11.94)

then
Σ(π∗ρ) � Σ11 , (11.95)

and for every y ∈ T(B),

Σ(ρ |π(x)�y) � Σ22 − Σ21Σ
−1
11Σ12 , (11.96)

which is the Schur’s complement of Σ11 in Σ(ρ). In virtue of Schur’s determinantal
identity (Proposition C.1),

det(Σ(ρ)) � det(Σ22 − Σ21Σ
−1
11Σ12)det(Σ11) (11.97)

� det(Σ(ρ |π(x)�y))Σ(π∗ρ), (11.98)

thus taking the logarithm,

ln det(Σ(ρ)) � ln det(Σ(ρ |π(x)�y)) + lnΣ(π∗ρ), (11.99)

then integrating over y with π∗ρ, and dividing by 2, we get

S(ρ) � Eπ∗ρ
(
S(ρ |π(x)�y)

)
+ S(π∗ρ). (11.100)

which is the wanted identity. �

Definition 11.29. We say that aGrassmannian triple (S, E ,N ), made of a grassman-
nian structure (S, E ) and a functor N of supports, is sufficiently rich if it satisfies the
following conditions:

1. for every V ∈ Ob S and every A ∈ NV , there exists a basis BV,A � (e1 , ..., en) of
EV such that

• for some S′ ⊂ [n] it holds that T(A) � ES′, and
• for every S ⊂ [n], there exists WS ∈ Ob S such that V ⊂ WS and ES �

WS/V ,
where ES :� 〈ei〉i∈S.

2. The sheaf N is adapted, and each NV contains EV .
3. For every V ∈ Ob S of codimension 2 (in E) is contained in (at least) four spaces

W1 , ...,W4 ∈ Ob S of codimension 1.
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An immediate consequence of the axiom 2 is that NV also contains all the affine
spaces parallel to one of the WS/V given by axiom 1, because they are fibers of the
projection EV → EW .

The axiom 3 mean that we can recover a situation analogous to (S2 , E ): EV is a
plane, each Wi/V gives a different line; we identify EW1 � E/W1 with W3/V , EW2

with W4/V , etc. and πWiV with the projection on EWi parallel to Wi .
Taking into account all the results from this chapter and the preceding one, we

get the following result.

Theorem 11.30. Let (S, E ,N ) be a sufficiently rich grassmannian triple. The degree one
information cohomology with coefficients in the twisted module X is made of functions

φV (ρ) � −aS(ρ) + b dim(A(ρ)), (11.101)

where a and b are arbitrary real constants.

Proof. Let ρ be a gaussian law with support A ⊂ EV , and BV,A be the basis given by
axiom 1 in Def. 11.29. We suppose that T(A) � ES; we clearly have E � ES ⊕ ESc ,
so there is a unique w ∈ ESc such that A + w � ES. This translation by w gives
a well-defined bĳection between the parameters of gaussian laws on A and ES.
Using Proposition 11.18, we have φV (ρ) � φWSc (πS

∗ ρ), where πS
∗ is projection on the

subspace ES ' E/WSc � EWSc parallel to ESc ; the law πS
∗ ρ is nondegenerate. The

determination of {φS :� φWSc }S⊂[n] restricted to nondegenerate laws was the subject
of Chapter 10: it established that, for all T ⊂ [n],

φT(ρ) � φT(m ,Σ) � a ln det(Σ) +
∑
i∈T

ϕ(mi , σii |g i), (11.102)

where ρ is a nondegenerate law on ET with parameters (m ,Σ) expressed in the
basis {ei}i∈S ⊂ BV,A, the factor a is an arbitrary real, and the ϕ(g i) are generalized
moments. In particular, this gives the value of φWS (πS

∗ ρ). In the previous expression,
the determinant is taken with respect to the standard euclidean metric associated to
the basis BV,A (the quadratic form defined by the identity matrix in that basis).

We claim that each ϕ(g i) is a constant. In fact, suppose S � {i , j} ⊂ [n] and ψS is
an axial cocycle (the axial part of φS) i.e. ES is a plane and ψS � ϕi + ϕ j . Since there
is an alternative basis to decompose ψWS given by the axiom 3 in Def. 11.29, we can
reproduce the arguments in Section 11.3.4 to establish that ϕi � ϕ j � B for certain
B ∈ R. �

11.3.6 Moments

In this section, we show that the moments appear in the theory as natural transfor-
mations invariant under the action of A .

Covariant module of expectation

Let (S, E ) be a grassmannian category on a finite dimensional vector space E over R;
N a compatible family of supports, and P an associated probability functor.

Given a finite dimensional real vector space F, let us denote by H (m)(F) the space
of locally integrable functions of moderate growth on F. It is usual to put onH (m)(F)
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the structure of locally convex space, that is defined by the following semi-norms,
associated to any norm x 7→ ‖x‖ on F,

∀x ∈ F, k ∈ N, Nx ,k( f ) � sup
y∈F
‖y‖k | f (y − x)|. (11.103)

With these semi-norms, H (m)(F) is complete, then a Fréchet space, and its dual, the
space of continuous linear forms onH (m)(F), is also a Fréchet space. Inwhat follows,
we denote by H (F) this dual space.

For each V ∈ Ob S, let us consider the vector space H
(m)

V of locally integrable
functions of moderate growth on the vector spaces EV , and also its dual space
HV � H (EV ). If V → W in S, writing π the projection πWV : EV → EW , we get
a linear continuous map π∗ from H

(m)
W to H

(m)
V , thus a linear continuous map π∗

from HV to HW . This define a covariant functor H from S to the category of Fréchet
vector spaces.

For V ∈ Ob S, denote by F
(m)
V the set of measurable maps from PV to HV . For

V,W ∈ S, W ⊇ V ,ΨV ∈ F
(m)
V and ρ ∈PV , the formula

(W.Ψ)(ρ)( f ) �
∫

EW

Ψ(ρ |W�y)dπ∗ρ(y), (11.104)

defines another element of F
(m)
V . This is an integral of continuous linear forms on

a Fréchet space, that should be interpreted in the sense of Gelfand-Pettis. From
the general properties of disintegrations, we expect again the equality W′.(W.Ψ) �
(W′W).Ψ to hold, for any W,W′ ∈ AV , in such a way that F

(m)
V has the structure of a

AV -module, that we name the expectation module.

Generalized moderate moment cocycle

For f ∈ H
(m)

V , and ρ ∈PV , let us define

Φ
(m)
V (ρ)( f ) �

∫
EV

f (x)dρ(x). (11.105)

These integrals are always convergent, because the laws ρ are gaussians.

Proposition 11.31. The collection of maps ρ 7→ Φ(m)V (ρ), for V ∈ Ob S, defines a natural
transformation from P to H .

Proof. Let V ⊆ W , ρ ∈PV , f ∈ H
(m)

W

π∗(Φ(m)V (ρ))( f )
(def.)
� Φ

(m)
V (ρ)(π

∗ f ) (def.)
�

∫
EV

f (π(x))dρ(x) �
∫

EW

f (y)dπ∗ρ(y). (11.106)

Therefore
π∗Φ

(m)
V (ρ) � Φ

(m)
W (π∗ρ). (11.107)

�

Proposition 11.32. The component Φ(m)V ∈ F
(m)
V is invariant under the action of AV .
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Proof. Let f ∈ H
(m)

V : it can also be seen as an element of H ∗
V . By definition of the

action,

(W.Φ(m)V )(ρ)( f ) �
∫

EW

Φ
(m)
V (ρ |W�w)( f )dπWV

∗ ρ(w). (11.108)

According to the definition of Φ(m)V , we deduce that

(W.Φ(m)V )(ρ)( f ) �
∫

EW

(∫
EV

f (x)dρ |W�w

)
dπWV
∗ ρ(w). (11.109)

But the definition of disintegration entails that the integral in (11.109) equals∫
EV

f (x)dρ(x) � Φ(m)V (ρ)( f ).

�

The underlying general property of conditional expectation is that for any vecto-
rial random variable and any σ-algebra T ,

E(E(X |T )) � E(X). (11.110)

Remark 11.33. The natural transformation Φ(m) is an element of F̃ �

Hom[S,Meas](P ,H ); this set has the structure of an abelian group with component-
wise addition: if φ, ψ ∈ F̃ then ρ ∈ PV 7→ φV (ρ) + ψV (ρ) ∈ HV is an element of F̃
too. However, there is no natural ring of variables that acts on this abelian group to
turn it into a module.

Ordinary moments

For each integer n ∈ N, consider the symmetric powers Sn(EV ), for V ∈ Ob S; they
form a covariant functor En from S to the category of vector spaces. For each V ∈ A ,
the space Sn(E∗V ) is a subspace of H(m)V , and its dual Sn(EV ) is a quotient of HV .

Every ρ ∈ PV defines by integration a linear function on the space of homo-
geneous polynomials Sn(E∗V ), then an element of Sn(EV ), that we name the generic
moment of order n of ρ, and write Φn

V (ρ). The linear form Φn
V (ρ) is the restric-

tion to Sn(E∗V ) of the linear form Φ(m)V (ρ) on Hm)
V . Varying V , this gives a natural

transformation from P to En .

Proposition 11.34. This function Φn
V is invariant under the action of AV .

Proof. It is an immediate corollary of the Proposition 11.32. �

For n � 0, S0(EV ) � R, and the integration of a constant C is equal to C.
For n � 1, S1(EV ) is equal to EV , and the moment is the mean ρ 7→ MV (ρ). The

mean vector {MV }V∈Ob S gives a natural transformation from the covariant functor
P to the covariant functor E : V 7→ EV . The naturality is equivalent to the equations
of direct images: MW (π∗ρ) � π(MV (ρ)).
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11.4 Grassmannian probability modules
More generally, given a grassmannian category of E, we can consider collections QV ,
for V ∈ Ob S of probability laws that are absolutely continuous with respect to one
of the Lebesgue measure in LV , corresponding to an affine subspace A(ρ) in MV
(or more generally NV ⊆ MV ), and we can ask that these collections are stable by
push-forward πWV

∗ : QV → QW when V ⊆ V , and also by conditioning ρ |W�w , i.e.
by the elements of disintegration.

We can introduce the presheaf F (Q), of universally integrable functions, that
maps V ∈ Ob S to the set F (Q)V of measurable functions on QV such that all
the integrals considered for defining the action of A are convergent. The general
arguments of the main text show that the axioms of A -module are satisfied.

All that also works with the bundles ln L a , and the following general result
holds:

Proposition 11.35. If for every V ∈ Ob S, every ρ ∈ QV , and any λ ∈ LA(ρ), the function
ln gλ(ρ) is ρ integrable, then the multiple aS of the entropy is a cocycle of F−a .

Proof. Working in T(A), with the restriction of the projection π � πWV , we choose
Lebesgue measures adapted to the image dy and the kernel dx (cf. Proposition F.9).
Let g(x , y) be the joined density of (X,Y)with respect to dx dy; we have

g(y) �
∫

g(x , y)dx. (11.111)

Then∫ ∫
g(x , y) ln g(x , y)dx dy

�

∫ (∫
g(x , y)

g(y) ln
g(x , y)

g(y) dx
)

g(y)dy +

∫
g(y) ln g(y)dx. (11.112)

�

In the samemanner as for the gaussian laws, the dimension of the support d(A(ρ))
is a cocycle ofF (Q), thenwe can add anymultiple c.d(A) to the entropy S, and obtain
a class of cohomology of degree one of X −a .

In many cases it is also possible to define the mean and the moments, as natural
and invariant transformations.
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Chapter 12

Generalized entropy and
asymptotic concentration of
measure

We state the asymptotic equipartition property for a sequence of independent and
identically distributed random variables in a very general form. This complements
the results in the other chapters showing that, for any σ-finite measure µ and any
probability law ρ that is absolutely continuous with respect to µ, there is notion of
entropy:

Sµ(ρ) � −
∫

ln
(

dµ
dρ

)
dρ, (12.1)

that is relevant from a probabilistic viewpoint. As n → ∞, the iterated law ρ⊗n

concentrates on a typical set, whose µ-volume is approximately exp(nSµ(ρ)).

12.1 Asymptotic equipartition property

Let (EX ,B) be ameasurable space, supposed to be the range of some randomvariable
X, and let µ be a σ-finite measure µ on it. In applications, several examples appear:

1. EX a countable set, B the corresponding atomic σ-algebra, and µ the counting
measure;

2. EX the real line, B the Borel σ-algebra, and µ the Lebesgue measure;
3. as a generalization of the previous one, EX a locally compact, Hausdorff topo-

logical group, B its Borel σ-algebra, and µ some Haar measure.
The reference measure µ gives the relevant notion of volume.

Consider nowaprobabilitymeasure ρ onB, that is taken to be the law of X. By the
Lebesgue decomposition theorem, there exists a unique decomposition ρ � ρ1 + ρ2,
such that ρ1 is absolutely continuous with respect to µ (write ρ1 � µ), and ρ2 and µ
are mutually singular (write ρ2 ⊥ µ). 1 When ρ2 � 0, we say that X is nonsingular;
in this case, the law ρ has a density f with respect to the reference measure µ, that is
defined as the Radon-Nikodym derivative, f � dρ/dµ.

1Concretely, the decomposition is defined as follows: introduce the Radon-Nikodym derivative
f � dρ/d(µ + ρ), and set B � { x ∈ X | f (x) ≥ 1 }. Up to a set of (µ + ρ)-measure zero, this do not
depend on the representative of the derivative. Then, ρ2(A) :� ρ(A ∩ B), and ρ1(A) :� ρ(A ∩ Bc).
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Let {Xi}i∈N be a sequence of independent and identically distributed (iid) EX-
valued random variables, each one distributed according to a probability law ρ on
(EX ,B) that is supposed to be non-singular with respect to the reference measure
µ, with density f :� dρ/dµ.2 For each n ∈ N, the joint variable (X1 , ...,Xn) takes
values in (En

X ,B
⊗n , µ⊗n); by definition of independence, its law is ρ⊗n .3 Proposition

F.6 shows that µ⊗n is also σ-finite. Since ρ⊗n � µ⊗n , we can apply the Radon-
Nikodym theorem to define a joint density fX1 ,...,Xn (x1 , ..., xn) :� dρ⊗n

dµ⊗n . The repeated
application of Fubini’s theorem shows that∫

B1×···×Bn

dρ⊗n

dµ⊗n dµ⊗n
�

∫
B1×···×Bn

dρ⊗n (12.3)

�

∏
1≤i≤n

∫
Bi

dρ (12.4)

�

∫
B1

· · ·
∫

Bn

∏
i

dρ
dµ
(xi)dµ(xn) · · · dµ(x1), (12.5)

which implies that ρ⊗n has density

fX1 ,...,Xn (x1 , ..., xn) �
n∏

i�1
f (xi). (12.6)

Proposition 12.1. Let (EX ,B, µ) be a σ-finite measure space and {Xi : (Ω,F, P) →
(EX ,B, µ)}i∈N a collection of iid random variables, each following a law ρ with density
f � dρ/dµ with respect to µ. If the Lebesgue integral

Sµ(ρ) :� Eρ
(
− ln

dρ
dµ

)
� −

∫
supp µ

f (x) log f (x)dµ(x) (12.7)

is finite, then

− 1
n

log fX1 ,...,Xn (X1 , ...,Xn) → Sµ(ρ), (12.8)

P-almost surely.

Proof. Remark first that

ρ⊗n({ fX1 ,...,Xn � 0}) �
∫
{ fX1 ,...,Xn�0}

0 dµ � 0,

2In usual presentations of probability theory, first an auxiliary sample space (Ω,F, P) is introduced,
then each Xi is defined as a measurable function Xi : (Ω, F ) → (EX ,B), and the law ρ corresponds to
P ◦ X−1

i .
3Denote by ρn the joint law. Independence implies that, for any collection {B1 , ..., Bn} ⊂ B,

ρn(B1 × · · · × Bn) �
n∏

i�1
ρ(Bi) � ρ⊗n(B1 × · · · × Bn). (12.2)

For the the collection of all rectangles B1 × · · · × Bn constitute a π-system for the σ-algebra B⊗n , we
conclude that ρn � ρ⊗n on B. See Lemma 1.6 in [96]: “if two probabilitymeasures agree on a π-system,
then they agree on the σ-algebra generated by that π-system.”
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hence log fX1 ,...,Xn (X1 , ...,Xn) iswell definedP-a.e. Moreover, log fX1 ,...,Xn (X1 , ...,Xn) �∑n
i�1 log f (Xi), because of (12.6). The variables {− log f (Xi)} are iid and real valued,

so the strong law of large numbers [96, Sec. 14.5] states that

− 1
n

n∑
i�1

log f (Xi) → Eρ
(
− log f (Xi)

)
,

P-almost surely. �

Remark 12.2. The strong law for an iid sequence Y1 ,Y2 ,Y3... requires that, for all
k, E (|Yk |) < ∞ (i.e. the function Yk is Lebesgue integrable). In this case, E (Yk) �
E

(
| log f (X0)|

)
, and this must be finite in order for Sµ(ρ) to be finite.

Proposition 12.3 (Asymptotic Equipartition Property). We use the notation introduced
in Proposition 12.1 and we suppose that Sµ(ρ) is finite. For every δ > 0, set

A(n)δ :�
{
(x1 , ..., xn) ∈ En

X

�� ����− 1
n

log fX1 ,...,Xn (X1 , ...,Xn) − Sµ(ρ)
���� ≤ δ }

. (12.9)

Then,
1. for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

P
(
A(n)δ

)
> 1 − ε;

2. for every n ∈ N,
µ⊗n(A(n)δ ) ≤ exp{n(Sµ(ρ) + δ)};

3. for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

µ⊗n(A(n)δ ) ≥ (1 − ε) exp{n(Sµ(ρ) − δ)}.

Proof. Part (1) is just a consequence of Proposition 12.1, since almost sure convergence
implies convergence in probability.

For the rest, note first that, for every (x1 , ..., xn) ∈ A(n)δ ,

e−n(Sµ(ρ)+δ) ≤ f (x1 , ..., xn) ≤ e−n(Sµ(ρ)−δ).

Therefore,

1 ≥
∫

A(n)δ

fX1 ,...,Xn dµ⊗n ≥
∫

A(n)δ

e−n(Sµ(ρ)+δ) dµ⊗n ,

which implies statement (2).
For part (3): take ε > 0 and remark that that, if n is big enough,

1 − ε ≤ P
(
A(n)δ

)
�

∫
A(n)δ

fX1 ,...,Xn dµ⊗n ≤ e−n(Sµ(ρ)−δ)µ⊗n(A(n)δ ).

�
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When EX is a countable set (possibly infinite), and µ the counting measure, a
probability law ρ on EX is always absolutely continuous with respect to µ, and its
density is a function p : EX → [0, 1] such that

∑
x∈EX p(x) � 1, that is usually taken

as the definition of a probability law in the discrete case. Then Sµ(ρ) corresponds to
the familiar expression −∑

x∈EX p(x) log p(x), that we have denoted S1. This function
was studied by Shannon in [78] for the case |EX | < ∞, where he also stated a
version of the asymptotic equipartition property. The idea behind this theorem
apparently goes back to Boltzmann [79]. It is also possible to consider any multiple
of the of the counting measure, ν � αµ, for α > 0. In this case, the condition∫

EX

dρ
dν dν �

∫
EX

dρ � 1 translates into α
∑

x∈EX

dρ
dν � 1, i.e. a probability density that

is normalized to sum α−1.
If EX � Rn , µ is the corresponding Lebesgue measure, and ρ a probability law

such that ρ � µ, then the derivative dρ/dµ ∈ L1(Rn) corresponds to the elementary
notion of density, and the quantity Sµ(ρ) is the continuous entropy that was also
introduced by Shannon in [78] in order to study continuous signals.

For any EX , if µ is a probability law, the expression Sµ(ρ) is (the opposite of) the
Kullback-Leibler divergence.

12.2 Certainty and divergence

Proposition 12.3 makes precise the relation between the entropy Sµ(ρ) and certainty.
1. Discrete case: letEX be a countable set and µ be the countingmeasure. Consider

an EX-valued variable X with law ρ � δx0 , for certain x0 ∈ EX . Then, Sµ(ρ) � 0
and A(n)δ � {(x0 , ..., x0)}, whose volume is evidently 1, for every n. Therefore,
µ⊗n(A(n)δ ) � exp(nSµ(ρ)), and the inequalities in Proposition 12.3 are satisfied.

2. Suppose each Xi distributes uniformly on B(x0 , ε) ⊂ Rd , which means that its
density dρ/dλ is |B(x0 , ε)|−1χB(x0 ,ε) (the notation |A| stands for λ⊗n

d (A), the
Lebesgue measure). In this case, Hλd (ρ) � log(|B(x0 , ε)|) � log(cdεd), where cd
is a constant characteristic of each dimension d, and Hλd (ρ) → −∞ as ε → 0
(i.e. as Xi concentrates on a single output x0). Part (2) in Proposition 12.3 says
that

|A(n)δ | ≤ exp(nd log ε + Cn), (12.10)

which means that, for fixed n, the volume goes to zero as ε → 0, as intuition
would suggest. Therefore, the divergent entropy is necessary to obtain the good
volume estimates.

3. When each Xi takes values in R2, according to a Gaussian law ρ with mean

0 and covariance matrix Σ �

[
1 r
r 1

]
, with r ∈ [0, 1]. Whenever r , 1, the

law ρ is absolutely continuous with respect to the Lebesgue measure λ2, and
Hλ2(ρ) � 1

2 ln(det(2πeΣ)) � ln(2π) + ln(1 − r2). For every n ∈ N,

|A(n)δ | ≤ exp(n ln(1 − r2) + Cn) → 0 as r → 1. (12.11)

The case r � 1 corresponds to a singular ρ with respect to the Lebesgue
measure on R2: the probability is concentrated on the diagonal ∆ � col(Σ),
whose Hausdorff dimension equals 1. The relevant reference volume is then a



Generalized entropy and asymptotic concentration of measure 199

Lebesgue measure supported on this affine subspace, that can also be seen as
the corresponding Hausdorff measure.

12.3 Example: Rectifiable subspaces of Rn

In [51], Riegler, Hlawatsch, Koliander, and Pichler introduced another family of
examples for the AEP as stated in the previous section. The important technical
point is that the Hausdorff measure associated to a rectifiable set, or a countable
union of such sets, is a σ-finite measure.

Set EX � Rd , and denote by λd the corresponding Lebesgue measure. The
diameter of a subset S of Rd , is diam(S) � sup{ |x − y | | x , y ∈ S }. For any m ≥ 0 and
any A ⊂ Rn , define

Hm(A) � lim
δ→0

inf
{Si}i∈I

∑
i∈I

αm

(
diam(Si)

2

)m

, (12.12)

where αm is a constant and the infimum taken over all countable coverings {Si}i∈I
of A such that each set Si has diameter at most δ. This is an outer measure in Rn ,
that restricts to a measure Hm on Borel subsets [66], called Hausdorff measure. If
αd :� πd/2/Γ(d/2 + 1), which is the volume of the ball B(0, 1) ⊂ Rm when m is an
integer, the measureH d coincides with λd .

Let S be a measurable subset of Rn , and let m be its Hausdorff dimension:

m � inf{ k | H k(S) � 0 }.

The set S can be seen as a measurable space with the induced σ-algebra A :�
{ S ∩ B | B ∈ B(G) } (that is also the Borel σ-algebra for the induced topology on S);
the measure Hm restricts to a measure on (S,A), that we denote λS (nonstandard
notation): for every A ∈ A, λS(A) :� H 1(A). Remark that λRd � λd . We introduce
now a particular family of subsets S such that λS behaves well.

Definition 12.4 (Countably rectifiable sets). An Hm measurable subset S of Rd

is called countably m-rectifiable (for m ≤ d) if there exist Lebesgue measurable,
bounded sets Ak ⊂ Rm and Lipschitz functions fk : Ak → Rd , enumerated by k ∈ N,
such thatHm(S \ ∪k fk(Ak)) � 0. The set S is called 0-rectifiable if it is countable.

If S is countable m-rectifiable, the measure λS � Hm |S is σ-finite [51, Lemma 4]
and we can apply Proposition 12.3 to any probability measure absolutely continuous
with respect to λS. Moreover, themeasure λ⊗n

S corresponds to theHausdorffmeasure
H nm restricted to Sn [51, Lemma 27]. Reference [51] discusses some particular cases:
distributions on the unit circle, and positive semidefinite rank-one randommatrices.
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Appendix A

Category theory

A.1 Notations

Given a category C, we denote by Ob C the class of its objects and Hom(C) the class
of morphisms in C. Given A, B ∈ Ob C, the class of morphisms between A and B is
denoted by HomC(A, B) or simply Hom(A, B)whenever C is clear from context.

A category is called small if the classOb C andHom(C) are sets (instead of proper
classes). One can also work with Grothendieck’s universes, in which case Ob C and
Hom(C) are supposed to belong to a fixed universe. In this work, all categories are
small.

A full subcategoryD ofC is such thatOb D ⊂ Ob C and for eachpairA, B ∈ Ob D,

HomD(A, B) � HomC(A, B).

A.2 Subobjects and quotients
Given two monomorphisms u : B → A and u′ : B′ → A, one says that u dominates
u′, written also u ≥ u′, if it is possible to factor u as u′v, where v : B → B′ (and
this morphism is therefore uniquely determined). This is a preorder on the class
of monomorphisms with codomain A. Two morphisms u and u′ are equivalent if
u ≥ u′ and u′ ≥ u, and in this case the corresponding morphisms b → B′ and
B′ → B are inverses one of each other. Choose then a representative of each class
of monomorphisms with values in A; these representatives are called subobjects
of A. Therefore, a subobject is an object B equipped with a map u : B → A, called
canonical injection. The relation ≥ is an order relation on the equivalence classes. The
consideration of an analogous preorder on the class of epimorphisms with domain
A allow us to define the ordered class of quotients of A.
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Appendix B

Abstract simplicial complexes

In this section, we recall the main definitions concerning abstract (or combinatorial)
simplicial complexes, for the convenience of the reader. Most of them are taken
verbatim from [56].

We define an (abstract) simplicial complex as a collection K of nonempty finite
subsets of a finite set S, subject to the condition: if s ∈ K , then every nonempty
subset of s is in K . A subcomplex K ′ of K is collection of subsets of S contained in
K that also satisfies the condition above.

The finite sets that make up K are called abstract simplices. Given an abstract
simplex s ∈ K , its elements are called vertexes and its nonempty subsets are called
faces. We say that K is a finite complex when K is a finite set, and locally finite if
every vertex belong to a finite number of simplices. The dimension of an abstract
simplex s ∈ K is |s | − 1. When the dimensions of the simplices of K are bounded
above, the complex is finite dimensional and its dimension is the smallest upper
bound.

The d-skeleton of K is the subcomplex of K consisting of all the simplices that
have dimension at most d.

The vertex set of a complexK is

K0 �

⋃
s∈K

s . (B.1)

A simplicial map f : K → L is given by a vertex map f0 : K0 → L0 which must
satisfy the property that f (s) :� { f0(v1), ..., f0(vk)} ∈ L whenever s � {v1 , ..., vk} ∈
K .

Example B.1. The abstract simplex ∆([n]) is the simplicial complex P([n]): its 0-
dimensional simplices are the singletons, the 1-dimensional simplices are the sets of
cardinality two, etc.
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Appendix C

Linear algebra

C.1 Schur complements
For any block matrix

M �

(
A B
C D

)
such that A and D are square matrices (not necessarily of the same size) and A is
invertible, the Schur complement of A in M is the matrix Ā :� D − BA−1C (the
standard notation is M/A). The matrix M/D is defined analogously, provided D is
nonsingular. The determinant of M can be computed with a formula proposed by
Schur in [75, p. 31].

Proposition C.1 (Schur’s determinantal identity, [14, p. 3]). Let

M �

(
A B
C D

)
be a block matrix such that A and D are square matrices (not necessarily of the same size). If
A is invertible, then

|M | � |A| |M/A|. (C.1)

Similarly, if D is invertible,
|M | � |D | |M/D |. (C.2)

Proof. When A is invertible, the identity(
A B
C D

) (
Id1 −A−1B
0 Id2

)
�

(
A 0
C D − CA−1B

)
(C.3)

implies the claim. �
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Appendix D

Multivariate normal distributions

In this section, we follow closely [70, pp. 517ff.]. We also include a more explicit
discussion of the effects of a change of basis.

Let Ep be a vector space of dimension p.

Definition D.1. A Ep-valued random variable U is said to have a p-variate nor-
mal distribution if and only if every linear functional of U has a univariate normal
distribution.

We can restate this definition just in terms of the law of U.

Definition D.2. A law ρ on Ep is gaussian (or normal) if, for every linear functional
L : Ep → R, the image measure Lρ corresponds to a univariate normal probability
measure.

Remark that these definitions are independent of any basis. If we fix a basis
B � {b1 , ..., bn} and denote by B∗ � {b∗1 , ..., b∗n} the dual basis, then we can write
U � (U1 , ...,Un) and introduce the mean vector

m :� E (U) :� (E (U1) , ...,E (Un)) (D.1)

and the covariance matrix

D(X) :� (Cov(Ui ,U j))0≤i , j≤n , (D.2)

that we denote Σ � (σi j)0≤i , j≤n . In terms of the law ρ, the equivalent definitions are
mi �

∫
R

x db∗iρ(x) and σi j �
∫
R

∫
R
(x − mi)(y − m j)db∗iρ(x)db∗jρ(y).

If X is a p-dimensional random variable and M is any (q × p)matrix,

E
(
MtrU

)
� MtrE (X) (D.3)

D(MX) � MD(X)Mtr (D.4)

Therefore, if C � {c1 , ..., cn} is another basis and A the change-of-basis matrix (ci �

Abi), then the previous identities imply thatAm andAΣAtr are themean andvariance
of U expressed in the basis C.

From now on, we consider that a basis of Ep has been fixed and therefore that
each normally distributed vector U (equivalently, each gaussian law ρ) has a well
defined mean and variance. We write U ∼ Np(m ,Σ).
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Proposition D.3 (Structure theorem for normally distributed variables, [70, p. 521]).
U ∼ Np(m ,Σ) with rankΣ � r if, and only if,

U � m + BG, BB′ � Σ

where B is a (p × r) matrix of rank r and G ∼ Nr(0, I), that is, the components G1 , ...,Gr
are independent and each is distributed as N1(0, 1).

In fact, sinceΣ is a real symmetric matrix, it can be diagonalized by an orthogonal
matrix P i.e. Σ � PDP′. When Σ is positive definite (has full rank), B is simply P

√
D;

when Σ is positive semidefinite, one can ignore the null columns of P
√

D, that
are associated to the null eigenvalues. If B1 , ..., Br denote the linearly independent
columns of B, then for every T ∈ Rp ,

TtrΣT � (Btr
1 T)2 + ... + (Btr

r T)2 , (D.5)

which corresponds to Sylvester’s law of inertia.

Corollary D.4. For every A ∈ Mp ,q(R) and b ∈ Rp , if X ∼ Nq(m ,Σ), then Ax + b ∼
Np(Am + b ,AΣAtr).

Proof. That Ax ∼ Np(Am ,AΣAtr) can be verified directly from the definition: for
every linear functional represented by Ttr, we have TtrAX � (TtrA)X, which is a
univariate normal (since X is normal) with mean Am and covariance AΣAtr. The
structure theorem makes clear that a translation by b just translates the mean. �

Remark D.5. Given a matrix A, a generalized inverse A− is any matrix that verifies
AA−A � A. Generalized inverses always exists, but in general they are not unique.
However, they are unique when a is invertible and in this case A−1 � A−.

PropositionD.6. LetY be anEp-valued randomvariablewith p-variate normal distribution,
Y ∼ Np(µ,Σ). Given a decomposition Ep � Eq × Es , let us introduce the notations
Y � (Y1 ,Y2) ∈ Eq×Es , mi � E (Yi), andΣi j � Cov YiYj , in such a way that m � (m1 ,m2),
and

Σ �

(
Σ11 Σ12
Σ21 σ22

)
.

Then,
1. Y1 ∼ Nq(m1 ,Σ11) and Y2 ∼ Ns(m2 ,Σ22).
2. Y1 |Y2 � y2 ∼ Nq(m̄1(y2), Σ̄11), where m̄1(y2) :� m1 + Σ12Σ

−
22(y2 − m2), and Σ̄11 :�

Σ11 − Σ12Σ
−
22Σ21.

3. Y |Y2 � y2 ∼ Np

((
m1(y2)

y2

)
,

(
Σ̄11 0
0 0

))
.

4. If Σ is positive definite, then Σ11 and Σ22 too. Hence Σ−ii � Σ−1
ii in the previous

formulae.

Proposition D.7. The law of Y ∼ Np(m ,Σ) is absolutely continuous with respect to λp if
and only if Σ is positive definite.

Proof. We use the representation Y � m + BG introduced above.
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If Σ is positive definite, all its eigenvalues are strictly positive and the rank of Σ
is p. Thus B is a p × p orthogonal matrix. Let A ⊂ Rp be a set of Lebesgue measure
zero. Then B−1(A − m) also has Lebesgue measure zero and

P (Y ∈ A) � P
(
G ∈ B−1(A − m)

)
�

∫
B−1(A−m)

e−
1
2 x2

(2π)d/2
dx � 0.

If Σ is not positive definite, its rank r is strictly less than p. The vector Y belongs
to the affine space m+col(B), which has dimension r and hence p-Lebesguemeasure
zero. �
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Appendix E

Distribution theory

For all the relevant definitions, see [76] or [86].
Let us introduce first the multi-index notation. An n-dimensional multi-index is

a vector α � (α1 , ..., αn) ∈ Nn . They can be added and subtracted component-wise.
We say that α ≤ β if both multi-indices have the same size and αi ≤ βi for every i.
Furthermore, α! :� α1! · · · αn!, and for any ν ≤ α,(

α
ν

)
:�

n∏
i�1

(
αi

νi

)
.

Given x ∈ Rn , xα :� xα1
1 · · · x

αn
n . Given a function f ∈ C∞(Rn), ∂α f :� ∂α1∂α2 · · · ∂αn f .

The space of distributions D′(Ω), the dual of smooth functions with compact
support contained in an open set Ω of Rd , is defined in [76, Ch. 3]. We use the
following characterization of distributions supported on a point.

Proposition E.1 (Distributions supported in a single point, cf. [76, Thm. XXVII]
and [82, Thm. 1.70]). Let Ω be an open set in Rd , x ∈ Ω and u ∈ D′(Ω) with
supp u � {x0}. Then there exist m ∈ N and, for every multi-index α that verifies |α | ≤ m,
a constant cα ∈ C such that

∀ϕ ∈ D(Ω), 〈u , ϕ〉 �
∑
|α |≤m

cα∂αϕ(x0).

Definition E.2. The Schwartz space, denoted by S(Rd), is defined as the space of
smooth fast-decreasing complex functions over Rd . Explicitly,

S(Rd) :� {ϕ ∈ C∞(Rd)
�� ∀α, β ∈ Nd ‖xαDβϕ‖∞ < ∞}. (E.1)

The space S′(Rd) of tempered distributions is the topological dual of S(Rd).
The topological space S(Rd) is a complete, metrizable, and embeds continuously

in L1(Rd). By definition, the Fourier transform F associates to any f ∈ L1(Rd) the
function f̂ : (Rd)∗ → C defined by

f̂ (ξ) �
∫
Rd

f (x)e−2πiξ·x dx. (E.2)

One can prove that F (S) ⊂ S. In fact, F : S → S is an isomorphism of topological
vector spaces [86, Thm. 25.1]. Its transpose is also denoted by F and extends the
definition of the Fourier transform to the space of tempered distributions.
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Definition E.3. The space of multiplication operators (cf. [86, Def. 25.3]), denoted
by OM(Rd) is defined as the space of all complex smooth functions such that all of
their derivatives of all orders are polynomially bounded. Explicitly,

OM :� { f ∈ C∞(Rd)
�� ∀α ∈ Nd ∃C > 0 ∃N ∈ N

such that ∀x ∈ Rd , |Dα f (x)| ≤ C(1 + |x |2)N }. (E.3)

If f ∈ OM and ϕ ∈ S(Rd), then f ϕ ∈ S(Rd).
If T ∈ S′(Rd), its convolution T ∗ ϕ with a function φ ∈ S(Rd) is defined as the

function x ∈ Rd → (T ∗ ϕ)(x) :� 〈T, τx ϕ̌〉, where τxϕ(y) � ϕ(x + y) et ϕ̌(y) � ϕ(−y),
and this function belongs to OM , see [86, Thm. 30.2].

Definition E.4. A tempered distribution T ∈ S′(Rd) is called a convoluter (cf. [86,
Def. 30.1]) if for all N ∈ N there exists MN ∈ N and a finite family of continuous
functions { fα}α∈Nd ,|α |≤MN

⊂ C(Rd) such that (1 + |x |2)N fα ∈ C0(Rd) for all α ∈ Nd

with |α | ≤ MN , and such that

T �

∑
|α |≤MN

∂α fα , (E.4)

where the derivatives are taken in the distributional sense.

The space of convoluters of tempered distributions overRd is denoted by O′C(Rd).
The Fourier establishes a bĳection between OM and O′C.

Proposition E.5 (Convolution theorem, [86, Thm. 30.4]). Let S ∈ S′, T ∈ O′C and
α ∈ OM (over Rd). Then F (S ∗ T) � F (S)F (T) and F (αS) � F (α) ∗ F (S) hold.

Proposition E.6 (Tensor product of pure tensor, [76, p. 268]). If φx ⊗ψy is a pure tensor
in S′(Rn) ⊗ S′(Rm) � S′(Rn × Rm), then

F (φx ⊗ ψy) � F (φx) ⊗ F (ψy).
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Measure theory

In this section, we just recall basic facts from measure theory, as stated in [39].

F.1 Radon-Nikodym derivative

Proposition F.1 (Lebesgue-Radon-Nikodym theorem, [39, Sec. 19.36]). Let (E,B, µ)
be a σ-finite measure space and let ν be a complex measure on (E,B) such that ν � µ. Then
there exists a unique f0 ∈ L1(E,B, µ) such that

1.
∫

E f dν �
∫

E f f0 dµ for all f ∈ L1(E,B, |ν |),
2. ν(B) �

∫
B f0 dµ for all B ∈ B, and

3. |ν |(B) �
∫

B | f0 | dµ for all B ∈ B.

Remark F.2. L1(E,B, µ) denotes the normed space of equivalence classes of integrable
functions. In the applications, we always work with a representative of this class,
but the results are independent of this choice.

Definition F.3. The essentially unique function f0 appearing in Proposition F.1 is
called the Radon-Nikodym derivative of ν with respect to µ. Usually dν

dµ is used
to denote f0. The relation between µ, ν and f0 can also be stated with the formula
ν � f0ν.

Proposition F.4 (Chain rule, [39, Sec. 19.40]). Let µ0, µ1, and µ2 be σ-finite measures on
(E,B) such that µ2 � µ1 and µ1 � µ0. Then,

1. µ2 � µ0, and
2. dµ2

dµ0
�

dµ2
dµ1
· dµ1

dµ0
, µ0-almost everywhere.

F.2 Product spaces

Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces. Introduce the product σ-
algebraM ⊗ N :� σ(M ×N), the σ-algebra generated by the collection of sets

M ×N :�
{

M × N
�� M ∈ M and N ∈ N

}
⊂ 2X×Y .

The pair (X × Y,M ⊗ N) is a measurable space.
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Proposition F.5 ( [39, Sec. 21.5]). Let (X,M) and (Y,N) be measurable spaces, and let f
be an extended real-valued or complex-valuedM ⊗ N-measurable function on X × Y. Then

1. the function x 7→ f (x , y) isM-measurable for all y ∈ Y, and
2. the function y 7→ f (x , y) is N-measurable for all x ∈ X.
The product measure µ ⊗ ν : M ⊗ N → R is the unique measure that satisfies

µ ⊗ ν(M × N) � µ(M)ν(N), see [39, Sec. 21.11].
Proposition F.6. Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces and let (X×Y,M⊗
N, µ ⊗ ν) be the product measure space. The measure µ ⊗ ν is σ-finite.
Proof. Let {Xi}i ⊂ M (respectively, {Yj} j ⊂ N) be a countable collection of pairwise
disjoint sets such that ∪iXi � X and µ(Xi) < ∞ for every i (resp. ∪ jYj � Y and
µ(Yj) < ∞ for every j). Then {Xi × Yj}i , j is a collection of pairwise disjoint,M ⊗ N-
measurable sets such that

µ ⊗ ν(Xi × Yj) � µ(Xi)ν(Yj) < ∞
for every pair (i , j), and ⋃

i , j

Xi × Yj � X × Y.

�

PropositionF.7 (Fubini’s theoremforpositive functions, [39, Sec. 21.12]). Let (X,M, µ)
and (Y,N, ν) be σ-finite measure spaces and let (X×Y,M⊗N, µ⊗ ν) be the product measure
space. If f is a nonnegative, extended real-valued, M ⊗ N-measurable function on X × Y,
then

1. the function x 7→ f (x , y) isM-measurable for each y ∈ Y;
2. the function y 7→ f (x , y) is N-measurable for each x ∈ X;
3. the function x 7→

∫
Y f (x , y)dν(y) isM-measurable;

4. the function y 7→
∫

X f (x , y)dµ(x) is N-measurable; and
5. the following equalities hold∫

X×Y
f (x , y)dµ ⊗ ν(x , y) �

∫
Y

∫
X

f (x , y)dµ(x)dν(y)

�

∫
X

∫
Y

f (x , y)dν(y)dµ(x).

In virtue of Proposition F.7-(5), the finiteness of∫
X×Y
| f (x , y)| dµ⊗ν(x , y),

∫
Y

∫
X
| f (x , y)| dµ(x)dν(y) or

∫
X

∫
Y
| f (x , y)| dν(y)dµ(x)

for an arbitrary measurable function f implies that the three integrals are finite. This
entails a more refined result for integrable functions

Proposition F.8 (Fubini’s theorem for integrable functions, [39, Sec. 21.13]). Let
(X,M, µ) and (Y,N, ν) be σ-finite measure spaces and let (X × Y,M ⊗ N, µ ⊗ ν) be the
product measure space. Let f be a complex-valued M ⊗ N-measurable function on X × Y
and suppose that at least one of the three integrals∫

X×Y
| f (x , y)| dµ⊗ν(x , y),

∫
Y

∫
X
| f (x , y)| dµ(x)dν(y),

∫
X

∫
Y
| f (x , y)| dν(y)dµ(x)

is finite. Then:
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1. the function x 7→ f (x , y) is in L1(X,M, µ) for ν-almost all y ∈ Y;
2. the function y 7→ f (x , y) is in L1(Y,N, ν) for µ-almost all x ∈ X;
3. the function x 7→

∫
Y f (x , y)dν(y) is well-defined µ-almost surely and belongs to

L1(X,M, µ);
4. the function y 7→

∫
X f (x , y)dµ(x) is well-defined ν-almost surely and belongs to

L1(Y,N, ν);
5. the following equalities hold∫

X×Y
f (x , y)dµ ⊗ ν(x , y) �

∫
Y

∫
X

f (x , y)dµ(x)dν(y)

�

∫
X

∫
Y

f (x , y)dν(y)dµ(x).

F.3 Haar measures
Given a group locally compact topological group G, there is a unique left-invariant
positive measure (Haar measure) up to a multiplicative constant [19, Thms. 9.2.2 &
9.2.6]. A particular choice of left Haarmeasure will be denoted by a Greek letter with
subscript G e.g. λG.

Proposition F.9 (Weil’s formula). Let G be a locally compact group and H a closed normal
subgroup of G. Given Haar measures on two groups among G, H and G/H, there is a Haar
measure on the third one such that, for any integrable function f : G→ R,∫

G
f (x)dλG(x) �

∫
G/H

(∫
H

f (x y)dλH(y)
)

dν(xH). (F.1)

The three measures are said to be in canonical relation, which is written λG �

λG/HλH .
For a proof of Proposition F.9, see [72] p.87-88 and Theorem 3.4.6.
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adapted, 172
admissible, 172
algebra of sets, 43
allowable

morphism, 68
resolution, 69

binomial coefficient, see multinomial co-
efficient

category
abelian, 62
additive, 61
of information structures, 48
relative abelian, 68

coboundary, 74
cochain

axial, 167
cocycle, 74
coimage, 62
cokernel, 62
conditional probability

disintegrations, 144
elementary, 46
in finite structures, 51
Kolmogorov’s definition, 143
regular version, 143

contextuality, 26, 30, 54
convolution, 214
coproduct, 48
counting function, 97

restricted, 97

determinant
Schur’s identity, 207

distribution, 213
tempered, 213

divergence

α-divergence, 95
Kullback-Leibler, 94

empirical distribution, 93
entropy

Shannon, 77
structural α-entropy, 77
Tsallis, 77

expectation module, 191
Ext

relative, 70
extension, 92

flag, 117
Fourier transform, 213
frustration, see contextuality
functor

cohomological, 64
∂-functor, 64
exact, 63
Ext, 67, 70
universal, 65

Γq-function, 117
gaussian distribution, see normal distri-

bution
generalizedmoment function, seemoment
Grassmannian category, 171
Grassmannian process, 126
Grassmannian triple, 189
group

modular, 113
group cohomology, 67

image, 62
information cohomology, 67

combinatorial, 99
probabilistic, 79
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information structure, 28, 47
bounded, 47
concrete, 44
embedding, 58
finite, 47
morphism, 48
quasi-concrete, 52
simplicial, 48

joint locality, see locality

kernel, 62

locality, 73, 93

marginalization, 46, 51
maximum entropy principle, 122
minimal, 173
model

classical, 53
quantum, 59

moment
generalized moderate moment func-

tion (gmmf), 166
generalized moment function (gmf),

166
generic moment, 192

multi-index, 213
multinomial coefficient

Fontené-Ward, 102
original, 21
q-deformed, 21, 117

noncontextual, 54
nondegenerate product

combinatorial, 102
probabilistic, 86

normal distribution, 209
covariance, 175, 209
mean, 174, 209

orthogonally closed, 174

paradox, see contextuality
Pochhammer symbol (a; x)n , 118
polynomial-growth condition, 152
presheaf

abelian, 66
of modules, 66
of sets, 65

probability functor, 46, 51, 150
adapted, 47

product, 48
projective object, 64

relative, 69

q
binomial theorem, 118
factorials, 117
integers, 117
multinomial coefficient, 117

quotient, 203

rectifiable set, 199
reference measure, 142
resolution, 69

Schwartz space, 213
sequence

admissible, 102
exact, 63

sheaf, 66, 67
σ-algebra of sets, 43
simplicial complex, 29, 141
simplicial information structure, 141
subcategory, 203
subobject, 203

topos, 30, 66
type, 117

variable
reducible, 89
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