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Information cohomology

Baudot and Bennequin (2015, GSI 2015 Plenary talk) introduced
information cohomology, an invariant associated to sheaves of
modules over a category of statistical observables...

...following the general constructions introduced by Grothendieck in
the framework of topos theory.
(The cohomology of sheaves over the category of open sets of a given topological
space gives topological invariants of that space, etc.)

When the sheaf is made of probabilistic functionals on a category of
discrete observables, Shannon’s entropy −

∑
p log p defines a

non-trivial cohomology class in degree 1. It satisfies the 1-cocycle
condition: the recurrence property

H(X ,Y ) = H(X ) + H(Y |X ).

In this sense, the chain rule is its defining property of the (discrete)
Shannon entropy.
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Does a similar result hold for the differential entropy?

1 We consider here a category that mixes discrete and continuous
observables.

2 The “coefficients” of the cohomology are again (a sheaf of)
probabilistic functionals: continuous real-valued functions of
probability laws. The cocycle equations are systems of functional
equations.

3 Every 1-cocycle, when evaluated on probability measures absolutely
continuous with respect to the Lebesgue measure, is a linear
combination of the differential entropy and the dimension of the
underlying space.
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Information structures

Let S be a partially ordered set (poset); we see it as a category, denoting
the order relation by an arrow.

An object of X of S (i.e. X ∈ ObS) is interpreted as an observable, with
possible outcomes E(X ) = (EX ,BX ). An arrow X → Y as Y being
coarser than X , and Y ∧ Z as the joint measurement of Y and Z .

Definition (Information structure)

A pair (S, E) made of a poset S and a functor E : S→Meassurj is an
information structure if

1 S has a terminal object, denoted >, and E> ∼= {∗} (certainty);

2 Products exist conditionally in S: whenever X ,Y ,Z ∈ ObS are such
that X → Y and X → Z , the categorical product Y ∧ Z exists in S;
and

3 For every Y ,Z ∈ ObS, E(Y ∧ Z ) is mapped injectively into
E(Y )× E(Z ) by E(Y ∧ Z → Y )× E(Y ∧ Z → Z ).
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Probabilities

We associate to each X ∈ ObS the set Π(X ) of probability measures on
E(X ), and to each arrow π : X → Y the marginalization map π∗ := Π(π)
that maps ρ to the image measure E(π)∗(ρ).

More generally, we consider any subfunctor Q of Π that is stable under
conditioning:

for all X ∈ ObS, ρ ∈ Q(X ), and π : X → Y , ρ|Y=y belongs to Q(X ) for π∗ρ-almost

every y ∈ EY , where {ρ|Y=y}y∈EY is the (Eπ, π∗ρ)-disintegration of ρ.

Remark

Conditional probabilities are understood as disintegrations.
Let (E ,B, ν) and (ET ,BT , ξ) be σ-finite measure spaces, T : E → ET measurable. The
measure ν has a (T , ξ)-disintegration {νt}t∈ET if each νt is a σ-finite measure on B
concentrated on {T = t} and for each measurable function f : E → R,∫

E

f dν =

∫
ET

(∫
E

f (x) dνt(x)

)
dξ(t).
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Modules

1 We associate to X ∈ ObS the monoid SX = {Y |X → Y }, equipped
with the product (Y ,Z ) 7→ Y ∧ Z (joint variable). Set AX = R[SX ]
(induced algebra: finite linear combinations...).

2 X 7→ SX and X 7→ AX define contravariant functors (presheaves).

3 An A-module is a collection of modules MX over AX , for X ∈ ObS,
with an action that is “natural” in X .

4 Main example: given Q probability functor, introduce F= F(Q) such
that F(X ) is the vector space of measurable functions on Q(X ), and
F(π) is precomposition with Q(π) for each morphism π in S. The
monoid SX acts on φ ∈ F(X ) by the rule

∀Y ∈ SX ,∀ρ ∈ Q(X ), Y .φ(ρ) =

∫
EY

φ(ρ|Y=y )dπYX∗ ρ(y) (1)

where πYX∗ is the marginalization induced by πYX : X → Y . This
action can be extended by linearity to AX .
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Information cohomology

Hn(S,F) = {n-cocycles}/{n-coboundaries}.
The {n-cocycles} and {n-coboundaries} are vector subspaces of
{n-cochains}.

For n = 1: {1-coboundaries} = {0}, so we simply have to describe
the 1-cocycles.
Let B1(X ) be the AX -module freely generated by a collection of
bracketed symbols {[Y ]}Y∈SX ; an arrow π : X → Y induces an
inclusion B1(Y ) ↪→ B1(X ), so B1 is a presheaf. A 1-cochain is a
natural transformations ϕ : B1 ⇒ F, with components
ϕX : B1(X )→ F(X ); we use ϕX [Y ] as a shorthand for ϕX ([Y ]).

The naturality implies that ϕX [Z ](ρ) equals ϕZ [Z ](πZX∗ ρ) (locality).

A 1-cochain ϕ is a 1-cocycle (i.e. δϕ = 0) iff

∀X ∈ ObS,∀X1,X2 ∈ SX , 0 = X1.ϕX [X2]− ϕX [X1 ∧ X2] + ϕX [X1].

Remark that this is an equality of functions in Q(X ).
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Known results: discrete case

An information structure is finite if for all X ∈ ObS , EX is finite.

Theorem (Baudot & Bennequin 2015, V. 2020 (TAC))

Suppose (S, E) is finite. If X can be written as a non-degenerate product
Y ∧ Z (this means that EX is sufficiently “close” to EY × EZ ), there exists
b ∈ R such that for all W ∈ SX and ρ in Q(W )

ϕW [W ](ρ) = −b
∑

w∈EW

ρ(w) log ρ(w). (2)
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Known results: continuous vector-valued case

Let E be a vector with Euclidean metric, and S a poset of vector
subspaces of E , ordered by inclusion, with E terminal and conditional
products (intersections).

Introduce sheaf E by V ∈ ObS 7→ EV := V⊥ ∼= E/V (using the
metric).

Introduce sheaf N of affine supports: N(X ) a set of affine subspaces
of EX + suitable hypotheses.
Each N ∈N(X ) has a Lebesgue measure µX ,N induced by the metric.

Introduce Qgauss such that Qgauss(X ) are probabilities measures ρ
with gaussian density w.r.t. µX ,N , for some N ∈N(X ).
Consider then a subfunctor F′ of F(Qgauss) made of functions that
grow moderately (i.e. at most polynomially) with respect to the mean,
in such a way that the integral defining Y .φ(ρ) is always convergent.
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Known results: continuous vector-valued case

A triple (S, E,N) is sufficiently rich when there are “enough supports”
(not all parallel to the spaces generated by a given basis).

Theorem (V. 2019 (Ph.D. thesis) )

Provided (S, E,N) is sufficiently rich, for every 1-cocycle ϕ, with
coefficients in F′(Q), there are real constants a and c such that, for every
X ∈ ObS and every gaussian law ρ with support EX and variance Σρ,

ϕX [X ](ρ) = a det(Σρ) + c . dim(EX ). (3)

Moreover, ϕ is completely determined by its behavior on nondegenerate
laws.

The variance is a nondegenerate, symmetric, positive bilinear form on E ∗X
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Product structure

Let (Sd , Ed) be a finite information structure and (Sc , Ec ,Nc)
associated to an Euclidean space E , such that the characterizations of
1-cocycle hold.

Let (S, E : S→Meas) be the product (Sc , Ec)× (Sd , Ed) in the
category of information structures.
By definition, every object X ∈ ObS has the form 〈Xc ,Xd〉 for
Xc ∈ ObSc and Xd ∈ ObSd , and π : 〈X1,X2〉 → 〈Y1,Y2〉 in S if and
only if there exist arrows π1 : X1 → Y1 in Sc and π2 : X2 → Y2 in Sd .
Outcomes: E(X ) = Ec(X1)× Ed(X2), etc.

There is an embedding in the sense of information structures Sc ↪→ S,
X → 〈X ,>〉; we write X instead of 〈X ,>〉. Similarly for discrete part.
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Supports

We extend the sheaf of supports Nc to the whole S setting
Nd(Y ) = 2Y \ {∅} when Y ∈ ObSd , and then
N(Z ) = {A× B |A ∈ Nc(X ),B ∈ Nd(Y ) } for any Z = 〈X ,Y 〉 ∈ ObS.

For every X ∈ ObS and N ∈N(X ), there is a unique reference measure
µX ,N compatible with M: Lebesgue measure given by the metric on the
affine subspaces of E , or the counting measure, or a mixture of both: for
A× B ⊂ EX × EY , with X ∈ ObSc and Y ∈ ObSd , it is just

∑
y∈B µ

y
A,

where µyA is the image of µA under the inclusion A ↪→ A× B, a 7→ (a, y).
We write µX instead of µX ,EX

.
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Probability laws

Consider the subfunctor Π(N) of Π that associates to each X ∈ ObS the
set Π(X ;N) of probability measures on E(X ) that are absolutely
continuous with respect to the reference measure µX ,N on some
N ∈N(X ). We define the (affine) support or carrier of ρ, denoted A(ρ),
as the unique A ∈N(X ) such that ρ� µX ,A.

Q ⊂ Π(N) subfunctor such that:

1 Q is adapted (closed under conditioning);

2 for each ρ ∈ Q(X ), the differential entropy
SµA(ρ)

(ρ) := −
∫

log dρ
dµA(ρ)

dρ exists i.e. it is finite;

3 when restricted to probabilities in Q(X ) with the same carrier A, the
differential entropy is a continuous functional in the total variation
norm;

4 for each X ∈ ObSc and each N ∈N(X ), (enough) gaussian mixtures
carried by N are contained in Q(X )—cf. next section.
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Information cohomology with coefficients in the module of
probabilistic functionals with Shannon’s action

Let Q be a probability functor satisfying conditions above.

For each X ∈ ObS, let F(X ) be the vector space of measurable functions
of (ρ, µM), equivalently (dρ/dµA(ρ), µM), where ρ is an element of Q(X ),
µM is a global determination of reference measure on any affine subspace
given by the metric M on E , and µA(ρ) is the corresponding reference
measure on the carrier of ρ under this determination.

Let G be linear subfunctor of F such that the quantities

Y .ϕ(ρ) =

∫
EY

ϕ(ρ|Y=y ) dY∗ρ

are always convergent. We want to compute H1(S, G).
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Formula for gaussian mixtures

For Z = 〈X ,Y 〉 = 〈X ,>〉 ∧ 〈>,Y 〉 =: X ∧ Y and
ρ =

∑
y∈EY

p(y)GMy ,Σyµ
y
X ∈ Q(Z ) as in the previous slide:

ϕZ [Z ](ρ) = ϕX [X ]( πXZ∗ ρ︸ ︷︷ ︸
gaussian mix.

) +

∫
EX

ϕZ [Y ]( ρ|X=x︸ ︷︷ ︸
discrete law

)dπXZ∗ ρ

= ϕY [Y ]( πYZ∗ ρ︸ ︷︷ ︸
discrete law

) +
∑
y∈EY

πYZ∗ ρ(y)ϕZ [X ](ρ|Y=y︸ ︷︷ ︸
gaussian

).

An explicit computation yields that, for some real constants a, b, and c :

ϕX [X ](πXZ
∗ ρ) =∑

y∈EY

p(y)

(
(a− b

2
) log det Σy + c dimEX −

b dimEX

2
log(2πe)

)
+b SµX

(πXZ
∗ ρ)︸ ︷︷ ︸

Diff. ent.

.

(4)
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Theorem (Characterization of 1-cocycles)

Let ϕ be a 1-cocycle on S with coefficients in G, X an object in Sc , and ρ
a probability law in Q(X ) absolutely continuous with respect to µX . Then,
there exist real constants c1, c2 such that

ϕX [X ](ρ) = c1SµA(ρ) + c2 dimEX . (5)

Proof.

Every density can be approximated by a random mixture of gaussians in L1(EX , µX ).
Let f be any density of ρ with respect to µX , (Xn)n∈N an i.i.d sequence of points of EX

with law ρ, and (hn) any sequence such that hn → 0 and nhd
n → ∞. Each

fn(x) =
1

n

n∑
i=1

GXi (ω),h2
n I

(x)

is the density of a composite gaussian law ρn (kernel estimate); the (Xn(ω))n is any
realization of the process such that fn tend to f in L1. So ρn → ρ in total variation (cf.
Scheffé’s lemma)
In virtue of the hypotheses on Q, SµA(ρ) is finite and SµA(ρn) → SµA(ρ). Since ϕX [X ] is
continuous when restricted to Π(A, µA) and ϕX [X ](f ) is a real number, we conclude
that necessarily a = b/2. The statement is then just a rewriting of (4).
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Conclusion

We get a characterization of the dimension and the differential entropy as
information measures that depends solely on their chain rules.

This should be contrasted with the involved characterizations introduced
e.g. by Ikeda (1959). The improvement is explained by the naturality
encoded in the categorical constructions.

Moreover, the cocycle equations that express the chain rule come from a
general algebro-geometric construction and suggest further connections
with geometry/topology.
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