Entropy under disintegrations

Juan Pablo Vigneaux Ariztía jpvigneaux@gmail.com

GSI 2021 - Harmonic Analysis on Lie Groups

Paris, 22 July 2021

July 22, 2021

1/21

Generalized entropy and Asymptotic Equipartition Property

2 Disintegrations

4 Application to locally compact topological groups

July 22, 2021 2 / 21

< A

- (E

(Generalized) differential entropy

Setting: (E_X, \mathfrak{B}) measurable space, μ reference "volume" measure (σ -finite).

- **1** E_X a countable set, \mathfrak{B} atomic σ -algebra, μ counting measure;
- 2) E_X euclidean space, \mathfrak{B} its Borel σ -algebra, μ Lebesgue measure;
- E_X a locally compact topological group, \mathfrak{B} its Borel σ -algebra, μ some (left) Haar measure;
- (E_X, \mathfrak{B}) arbitrary and μ a probability measure on it (prior/initial state).

(Generalized) differential entropy

Setting: (E_X, \mathfrak{B}) measurable space, μ reference "volume" measure (σ -finite).

- **(**) E_X a countable set, \mathfrak{B} atomic σ -algebra, μ counting measure;
- 2) E_X euclidean space, \mathfrak{B} its Borel σ -algebra, μ Lebesgue measure;
- E_X a locally compact topological group, \mathfrak{B} its Borel σ -algebra, μ some (left) Haar measure;
- (*E_X*, 𝔅) arbitrary and µ a probability measure on it (prior/initial state).

Given a probability measure ρ on (E_X, \mathfrak{B}_X) absolutely continuous w.r.t. μ (i.e. $\rho \ll \mu$), we define the **generalized differential entropy** as

$$S_{\mu}(\rho) := \mathbb{E}_{\rho}\left(-\ln\frac{\mathrm{d}\rho}{\mathrm{d}\mu}\right) = -\int_{E_{X}}\frac{\mathrm{d}\rho}{\mathrm{d}\mu}(x)\log\frac{\mathrm{d}\rho}{\mathrm{d}\mu}(x)\,\mathrm{d}\mu(x). \tag{1}$$

イロト イヨト イヨト

Theorem (Asymptotic Equipartition Property (AEP))

 (E_X, \mathfrak{B}, μ) and ρ as before. Suppose that $S_\mu(\rho)$ is finite. Let $\{X_i : (\Omega, \mathfrak{F}, \mathbb{P}) \to (E_X, \mathfrak{B}, \mu)\}_{i \in \mathbb{N}}$ be a collection of *i.i.d* random variables with law ρ .

For every $\delta > 0$, introduce the **typical set**

$$\mathcal{A}^{(n)}_{\delta}(
ho;\mu) := \left\{ \left. (x_1,...,x_n) \in E_X^n \, \middle| \, \left| -rac{1}{n} \log f_{X_1,...,X_n}(x_1,...,x_n) - \mathcal{S}_{\mu}(
ho)
ight| \leq \delta
ight\},$$

where $f_{X_1,...,X_n}$ is the joint density.

Theorem (Asymptotic Equipartition Property (AEP))

 (E_X, \mathfrak{B}, μ) and ρ as before. Suppose that $S_{\mu}(\rho)$ is finite. Let $\{X_i : (\Omega, \mathfrak{F}, \mathbb{P}) \rightarrow (E_X, \mathfrak{B}, \mu)\}_{i \in \mathbb{N}}$ be a collection of *i.i.d* random variables with law ρ .

For every $\delta > 0$, introduce the **typical set**

$$\mathcal{A}^{(n)}_{\delta}(
ho;\mu) := \left\{ \left. (x_1,...,x_n) \in E_X^n \, \middle| \, \left| -rac{1}{n} \log f_{X_1,...,X_n}(x_1,...,x_n) - \mathcal{S}_{\mu}(
ho)
ight| \le \delta
ight.
ight\},$$

where $f_{X_1,...,X_n}$ is the joint density. Then, for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that, for all $n \ge n_0$,

$$\mathbb{P}\left(A_{\delta}^{(n)}(\rho;\mu)\right) > 1-\varepsilon,$$

Theorem (Asymptotic Equipartition Property (AEP))

 (E_X, \mathfrak{B}, μ) and ρ as before. Suppose that $S_{\mu}(\rho)$ is finite. Let $\{X_i : (\Omega, \mathfrak{F}, \mathbb{P}) \rightarrow (E_X, \mathfrak{B}, \mu)\}_{i \in \mathbb{N}}$ be a collection of *i.i.d* random variables with law ρ .

For every $\delta > 0$, introduce the **typical set**

$$\mathcal{A}^{(n)}_{\delta}(
ho;\mu) := \left\{ \left(x_1,...,x_n
ight) \in E_X^n \ \Big| \ \left| -rac{1}{n} \log f_{X_1,...,X_n}(x_1,...,x_n) - \mathcal{S}_{\mu}(
ho)
ight| \le \delta
ight\},$$

where $f_{X_1,...,X_n}$ is the joint density. Then, for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that, for all $n \ge n_0$,

$$\mathbb{P}\left(\mathsf{A}^{(n)}_{\delta}(
ho;\mu)
ight)>1-arepsilon_{2}$$

and moreover

$$(1-arepsilon)\exp\{n(\mathcal{S}_{\mu}(
ho)-\delta)\}\leq \mu^{\otimes n}(\mathcal{A}^{(n)}_{\delta}(
ho;\mu))\leq \exp\{n(\mathcal{S}_{\mu}(
ho)+\delta)\},$$

Entropy as exponential growth rate

Corollary

$$\lim_{\delta \to 0} \lim_{n \to \infty} \frac{1}{n} \log \mu^{\otimes n}(A^{(n)}_{\delta}(\rho;\mu)) = S_{\mu}(\rho).$$

More imprecisely, but concisely: when n is big and δ small,

$$\mu^{\otimes n}(A^{(n)}_{\delta}(\rho;\mu)) \approx e^{nS_{\mu}(\rho)}$$

and the joint density is $\approx e^{-nS_{\mu}(\rho)}$ on this set.

Entropy as exponential growth rate

Corollary

$$\lim_{\delta \to 0} \lim_{n \to \infty} \frac{1}{n} \log \mu^{\otimes n}(A^{(n)}_{\delta}(\rho;\mu)) = S_{\mu}(\rho).$$

More imprecisely, but concisely: when n is big and δ small,

$$\mu^{\otimes n}(A^{(n)}_{\delta}(\rho;\mu)) \approx e^{nS_{\mu}(\rho)}$$

and the joint density is $\approx e^{-nS_{\mu}(\rho)}$ on this set.

Example

 $E_X = \mathbb{R}^n$, μ Lebesgue measure, φ automorphism given by matrix A; $\mu(\varphi(V)) = |\det A|\mu(V)$ and $S_\mu(\varphi_*\rho) = S_\mu(\rho) + \log |\det A|$, which is consistent with

$$\mu^{\otimes n}(A^{(n)}_{\delta}(\varphi_*\rho;\mu)) = \varphi^{\times n}(A^{(n)}_{\delta}(\rho;\mu)) = |\det A|^n \mu^{\otimes n}(A^{(n)}_{\delta}(\rho;\mu)).$$
(2)

Certainty in the discrete case (E_X countable): ρ = δ_x implies μ^{⊗n}(A⁽ⁿ⁾_δ(ρ; μ)) = 1 and hence S_μ(δ_x) = 0. Moreover, since for general ρ, μ^{⊗n}(A⁽ⁿ⁾_δ) ≥ 1, the entropy S_μ(ρ) is positive.

Section Certainty in the continuous case: $\mu^{\otimes n}(A_{\delta}^{(n)}(\rho;\mu)) \to 0$ iff $S_{\mu}(\rho) \to -\infty$.

3 If μ proba, then $-S_{\mu}(\rho) = D(\rho||\mu)$, and $\mu^{\otimes n}(A_{\delta}^{(n)}(\rho;\mu)) \leq 1$ translates into $D(\rho||\mu) \geq 0$.

Generalized entropy and Asymptotic Equipartition Property

2 Disintegrations

4 Application to locally compact topological groups

July 22, 2021 7 / 21

(A) → (A

Disintegrations

Setting: $T : (E, \mathfrak{B}) \to (E_T, \mathfrak{B}_T)$ measurable map, ν a σ -finite measure on (E, \mathfrak{B}) , and ξ a σ -finite measure on (E_T, \mathfrak{B}_T) .

Definition

The measure ν has a disintegration $\{\nu_t\}_{t\in E_T}$ with respect to T and ξ , or a (T,ξ) -disintegration, if

• ν_t is a σ -finite measure on \mathfrak{B} concentrated on $\{T = t\}$, which means that $\nu_t(T \neq t) = 0$ for ξ -almost every t;

2 for each measurable nonnegative function $f : E \to \mathbb{R}$,

•
$$t \mapsto \int_{E} f \, d\nu_t$$
 is measurable,
• $\int_{E} f \, d\nu_t = \int_{E} \int$

Disintegrations

Setting: $T : (E, \mathfrak{B}) \to (E_T, \mathfrak{B}_T)$ measurable map, ν a σ -finite measure on (E, \mathfrak{B}) , and ξ a σ -finite measure on (E_T, \mathfrak{B}_T) .

Definition

The measure ν has a disintegration $\{\nu_t\}_{t\in E_T}$ with respect to T and ξ , or a (T,ξ) -disintegration, if

• ν_t is a σ -finite measure on \mathfrak{B} concentrated on $\{T = t\}$, which means that $\nu_t(T \neq t) = 0$ for ξ -almost every t;

2 for each measurable nonnegative function $f: E \to \mathbb{R}$,

•
$$t \mapsto \int_E f \, d\nu_t$$
 is measurable,
• $\int_E f \, d\mu = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x) \, d\mu(x) \right)$

$$\int_{E} f \,\mathrm{d}\nu = \int_{E_{T}} \left(\int_{E} f(x) \,\mathrm{d}\nu_{t}(x) \right) \,\mathrm{d}\xi(t).$$

When ν probability, $x \in E \mapsto \int_E \chi_B(x) d\nu_{\mathcal{T}(x)}$ is a *regular version* of the conditional probability $\nu(B|\sigma(\mathcal{T}))$ defined by Kolmogorov.

Example

 $T: E \to E_T$ a surjection of finite sets, ν and ξ counting measures, with ν_t the counting measure restricted to $T^{-1}(t)$; the disintegration formula is simply $\sum_{x \in E} f(x) = \sum_{t \in E_T} \sum_{x \in T^{-1}(t)} f(x)$.

Example

 $T: E \to E_T$ a surjection of finite sets, ν and ξ counting measures, with ν_t the counting measure restricted to $T^{-1}(t)$; the disintegration formula is simply $\sum_{x \in E} f(x) = \sum_{t \in E_T} \sum_{x \in T^{-1}(t)} f(x)$.

Example

 (E, \mathfrak{B}, ν) product of two σ -finite measure spaces: $(E_S, \mathfrak{B}_S, \eta) \otimes (E_T, \mathfrak{B}_T, \xi)$, and T projection. Let ν_t be the image of η under the inclusion $s \mapsto (s, t)$. Then Fubini's theorem implies that ν_t is a (T, ξ) -disintegration of ν :

$$\int_{E_S \times E_T} f \, \mathrm{d}\nu = \int_{E_T} \left(\int_{E_S} f(s,t) \, \mathrm{d}\eta(s) \right) \, \mathrm{d}\xi(t) = \int_{E_T} \left(\int_E f \, \mathrm{d}\nu_t \right) \, \mathrm{d}\xi(t).$$

< ロト < 同ト < ヨト < ヨト

Proposition (Induced disintegration)

Let ν have a (T,ξ) -disintegration $\{\nu_t\}$ and let ρ be absolutely continuous with respect to ν with finite density r(x), with each ν , ξ and ρ σ -finite.

1 The measure ρ has a (T,ξ) -disintegration $\{\tilde{\rho}_t\}$ with $\tilde{\rho}_t = \mathbf{r} \cdot \nu_t$.

Proposition (Induced disintegration)

Let ν have a (T,ξ) -disintegration $\{\nu_t\}$ and let ρ be absolutely continuous with respect to ν with finite density r(x), with each ν , ξ and ρ σ -finite.

- **1** The measure ρ has a (T,ξ) -disintegration $\{\tilde{\rho}_t\}$ with $\tilde{\rho}_t = \mathbf{r} \cdot \nu_t$.
- **2** $T_* \rho \ll \xi$, with density $\int_E r \, \mathrm{d}\nu_t$.

Proposition (Induced disintegration)

Let ν have a (T,ξ) -disintegration $\{\nu_t\}$ and let ρ be absolutely continuous with respect to ν with finite density r(x), with each ν , ξ and ρ σ -finite.

1 The measure ρ has a (T,ξ) -disintegration $\{\tilde{\rho}_t\}$ with $\tilde{\rho}_t = r \cdot \nu_t$.

2
$$T_* \rho \ll \xi$$
, with density $\int_E r \, \mathrm{d}\nu_t$.

If T_{*}ρ is σ-finite then 0 < ν_tr < ∞ T_{*}ν-almost surely, and the measures {ρ_t} given by

$$\rho_t = \frac{r}{\int_E r \,\mathrm{d}\nu_t} \cdot \nu_t$$

are probabilities that give a $(T, T_*\rho)$ -disintegration of ρ .

 $T: E \to E_T$ a surjection of finite set, ν and ξ counting measures, with ν_t the counting measure restricted to $T^{-1}(t)$; the disintegration formula is simply $\sum_{x \in A \subset E} f(x) = \sum_{t \in T(A)} \sum_{x \in T^{-1}(t)} f(x).$

Let ρ be a proba on E; its density is $d_{\rho}(x) = \rho(\{x\})$. There is a disintegration

$$\int_{E} \chi_{A} d\rho = \rho(A) = \sum_{t \in E_{T}} \rho_{t}(A) d_{T_{*}\rho}(t) = \int_{E_{T}} \left(\int_{E} \chi_{A} d\rho_{t} \right) dT_{*}\rho.$$

which is the *theorem of total probability*. The conditional probabilities are the classical, $A \mapsto \rho_t(A) = \rho(A \cap T^{-1}(t))/\rho(T^{-1}(t))$, with density $d_{\rho}/d_{T_*\rho}(t)$ w.r.t. the counting measure on $T^{-1}(t)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Product spaces

 (E, \mathfrak{B}, ν) product of two σ -finite measure spaces: $(E_S, \mathfrak{B}_S, \eta) \otimes (E_T, \mathfrak{B}_T, \xi)$. Let ν_t be the image of η under the inclusion $s \mapsto (s, t)$. Then Fubini's theorem implies that ν_t is a (T, ξ) -disintegration of ν .

If r(s, t) is the density of a probability ρ on (E, \mathfrak{B}) , then $\rho_t \ll \nu_t$ with density r(s, t), the value of t being fixed, and $\tilde{\rho}_t$ is a probability supported on $\{T = t\}$ with density $r(s, t) / \int_{E_s} r(s, t) d\eta(s)$. Then,

$$\begin{split} \rho(A) &= \int_{E_T \times E_S} \chi_A r \, \mathrm{d}\nu \\ &= \int_{E_T} \left(\int_{E_S} \chi_A \frac{r}{\int_{E_S} r(s,t) \, \mathrm{d}\eta(s)} \, \mathrm{d}\eta \right) \int_{E_S} r(s,t) \, \mathrm{d}\eta(s) \, \mathrm{d}\xi(t) \\ &= \int_{E_T} \left(\int_E \chi_A \, \mathrm{d}\rho_t \right) \, \mathrm{d}T_* \rho(t). \end{split}$$

Generalized entropy and Asymptotic Equipartition Property

2 Disintegrations

Application to locally compact topological groups

July 22, 2021 13 / 21

Image: A matrix and A matrix

Chain rule

Setting: $T : (E_X, \mathfrak{B}_X) \to (E_Y, \mathfrak{B}_Y)$ measurable map between measurable spaces; μ (respectively ν) a σ -finite measure on (E_X, \mathfrak{B}_X) (resp. (E_Y, \mathfrak{B}_Y)), and $\{\mu_y\}$ a (T, ν) -disintegration of μ .

Theorem (Chain rule for general disintegrations)

Any probability measure ρ absolutely continuous w.r.t. μ , with density r, has a $(T, T_*\rho)$ -disintegration $\{\rho_y\}_{y \in Y}$ such that each ρ_y is a probability measure with density $r / \int_{E_X} r \, d\mu_y$ w.r.t. μ_y , and the following chain rule holds:

$$S_{\mu}(\rho) = S_{\nu}(T_*\rho) + \int_{E_Y} S_{\mu_y}(\rho_y) \, \mathrm{d}T_*\rho(y). \tag{3}$$

Chain rule

Setting: $T : (E_X, \mathfrak{B}_X) \to (E_Y, \mathfrak{B}_Y)$ measurable map between measurable spaces; μ (respectively ν) a σ -finite measure on (E_X, \mathfrak{B}_X) (resp. (E_Y, \mathfrak{B}_Y)), and $\{\mu_y\}$ a (T, ν) -disintegration of μ .

Theorem (Chain rule for general disintegrations)

Any probability measure ρ absolutely continuous w.r.t. μ , with density r, has a $(T, T_*\rho)$ -disintegration $\{\rho_y\}_{y \in Y}$ such that each ρ_y is a probability measure with density $r / \int_{E_X} r \, d\mu_y$ w.r.t. μ_y , and the following chain rule holds:

$$S_{\mu}(\rho) = S_{\nu}(T_*\rho) + \int_{E_Y} S_{\mu_y}(\rho_y) \, \mathrm{d}T_*\rho(y).$$
 (3)

Proof.

$$S_{\mu}(\rho) = \mathbb{E}_{\rho}(-\log r) = \mathbb{E}_{\rho}(-\log \frac{r}{\int_{E_X} r \,\mathrm{d}\mu_y} - \log \int_{E_X} r \,\mathrm{d}\mu_y) = ...$$

Example: Polar coordinates

Set $R : \mathbb{R}^2 \to [0, \infty[, x \mapsto ||x||]$. The change-of-variables formula

$$\int_{\mathbb{R}^2} \varphi(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{[0, \infty[} \left(\int_0^{2\pi} \varphi(r, \theta) r \, \mathrm{d}\theta \right) \, \mathrm{d}r, \tag{4}$$

means that the Lebesgue measure $\lambda = dx dy$ on \mathbb{R}^2 has an (R, dr)-disintegration into measures $\lambda_r = r d\theta$ on the level sets $\{R = r\}$. If ρ has density f, its $(R, R_*\rho)$ -disintegration are probabilities ρ_r with density $f / \int_0^{2\pi} f(r, \theta) r d\theta$ w.r.t. λ_r , and we obtain an exact chain rule:

$$S_{\lambda}(\rho) = S_{dr}(R_*\rho) + \int_{[0,\infty[} S_{\lambda_r}(\rho_r) \,\mathrm{d}R_*\rho(r).$$

It has to be contrasted with a deformed chain rule in the literature, with an extra term $\mathbb{E}_{\rho}(\log R)$.

If $\{\mu_y\}_y$ is a (T, ν) -disintegration of μ , then $\{\mu_y^{\otimes n}\}_y$ is a $(T^{\times n}, \nu^{\otimes n})$ -disintegration of $\mu^{\otimes n}$.

Proposition

Keeping the setting of the previous theorem,

$$\lim_{\delta\to 0} \lim_{n\to\infty} \frac{1}{n} \log\left(\frac{\int_{E_Y} \mu_y^{\otimes n}(A_{\delta}^{(n)}(\rho;\mu)) \,\mathrm{d}\nu^{\otimes n}(y)}{\nu^{\otimes n}(A_{\delta}^{(n)}(T_*\rho;\nu))}\right) = \int_{E_Y} S_{\mu_y}(\rho_y) \,\mathrm{d}T_*\rho(y).$$

Generalized entropy and Asymptotic Equipartition Property

2 Disintegrations

Application to locally compact topological groups

July 22, 2021 17 / 21

< A

Given a locally compact topological group G, there exists a left invariant Haar measure that we denote λ^{G} .

Proposition (Weil's formula)

Let G be a locally compact group and H a closed normal subgroup of G. Given Haar measures on two groups among G, H and G/H, there is a Haar measure on the third one such that, for any integrable function $f : G \to \mathbb{R}$,

$$\int_{G} f(x) d\lambda^{G}(x) = \int_{G/H} \left(\int_{H} f(xy) \, \mathrm{d}\lambda^{H}(y) \right) \, \mathrm{d}\lambda^{G/H}(xH).$$
(5)

Let us denote by $\lambda_{[g]}^{H}$ the image of λ^{H} under the inclusion $\iota_{g}: H \to G, h \mapsto gH$. The proposition shows that $\{\lambda_{[g]}^{H}\}_{[g] \in G/H}$ is a $(T, \lambda^{G/H})$ -disintegration of λ^{G} .

Proposition (Chain rule, Haar case)

Let G be a locally compact group, H a closed normal subgroup of G, and λ^{G} , λ^{H} , and $\lambda^{G/H}$ Haar measures in canonical relation. Let ρ be a probability measure on G. Denote by $T : G \to G/H$ the canonical projection. Then, there is T-disintegration $\{\rho_{[g]}\}_{[g]\in G/H}$ of ρ such that each $\rho_{[g]}$ is a probability measure, and

$$S_{\lambda^{G}}(\rho) = S_{\lambda^{G/H}}(\pi_{*}\rho) + \int_{G/H} S_{\lambda^{H}_{[g]}}(\rho_{[g]}) \,\mathrm{d}\pi_{*}\rho([g]). \tag{6}$$

- There is a notion of differential entropy on any measure space, which has a probabilistic interpretation in terms of concentration of measure.
- The entropy always depend on a choice of reference measure ("volume").
- Several information inequalities have a "volumetric" interpretation (or at least an analogue).
- Obsintegration of measures give regular versions of conditional probabilities in topological situations (e.g. Radon measures).
- Every disintegration of reference measures induces a chain rule for the corresponding entropies.
- In particular, the results apply to Haar measures in canonical relation. Information inequalities in this group case? Chain rule for mutual information and higher analogues?

Let $f : \mathbb{R}^M \to \mathbb{R}^k$ be a Lipschitz function and let E be a countably \mathcal{H}^N -rectifiable subset of \mathbb{R}^M .

The function $t \mapsto \mathcal{H}^{N-k}(E \cap f^{-1}(t))$ is \mathcal{L}^k -measurable, $E \cap f^{-1}(t)$ is countably \mathcal{H}^{N-k} -rectifiable for \mathcal{L}^k -almost every t, and

$$\int_{E} g(x) \sqrt{\det(d^{E}f_{x} \circ d^{E}f_{x}^{*})} \, \mathrm{d}\mathcal{H}^{N}(x) = \int_{\mathbb{R}^{k}} \left(\int_{E \cap \{f=t\}} g(y) \, \mathrm{d}\mathcal{H}^{N-k}(y) \right) \, \mathrm{d}t.$$

When $f : \mathbb{R}^2 \to R$ maps (x, y) to $\sqrt{x^2 + y^2}$ and $E = \mathbb{R}^2$, then $d^E f_{(x,y)} = \begin{bmatrix} x/\sqrt{x^2 + y^2} & y/\sqrt{x^2 + y^2} \end{bmatrix}$, $\sqrt{\det(d^E f_x \circ d^E f_x^*)} = 1$, and H^{N-k} is $r \, \mathrm{d}\theta$.