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‘While Shannen entropy is related to the growth rate of multinomial coefficients, we show that Tsallis 2-entropy is connected to their g-version; when g
is a prime power, these coefficients count the number of flags in ]F"; with prescribed length and dimensions (]Fq. denotes the field of order g). In
particular, the g-binomial coefficients count vector subspaces of given dimension. We obtain this way a combinatorial explanation for non-additivity.
‘We show that statistical systems whose configurations are described by flags provide a frequentist justification for the maximum entropy principle
with Tsallis statistics. We introduce then a discrete-time stochastic process associated to the g-binomial distribution, that generates at time n. a vector
subspace of ]Fg. The concentration of measure on certain "typical subspaces” allows us to extend the asymptotic equipartition property to this setting.
‘We discuss the applications to information theory, particularly to source coding.
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Shannon entropy

The multinomial coefficient

n . n!
Ky, ks kylee- ks

counts the number of words w € ", with X ={071,...,04}, such that g;
appears k; times.
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Shannon entropy

The multinomial coefficient

n . n!
Ky, ks kylee- ks

counts the number of words w € ", with X ={071,...,04}, such that g;
appears k; times.

From the point of view of probability and combinatorics, Shannon entropy
Hi(p1,....ps) = X3_; piInp; appears naturally in the asymptotic formula

(p1 n, ipsn) = exp(nHy(p1, ..., ps) + O(Inn)) (1)
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g-multinomials

For given g€ C~{1}, define

Q g-integers [n]g = Ci;:ll,

@ g-factorials: [n]g!:=[n]q[n—1]q--[1]q.

© g-multinomial coefficients by

_= [n]g!
o lalgl Tkl

n
ki, ..., ks

where ki, ..., ks are such that 3.2 | kj=n.
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g-multinomials

For given g€ C~{1}, define

Q g-integers [n]g = %,

@ g-factorials: [n]g!:=[n]q[n—1]q--[1]q.

© g-multinomial coefficients by

_= [n]g!
o lalgl Tkl

n
ki, ..., ks

where ki, ..., ks are such that 3.2 | kj=n.

n

When g is a prime power, [k1

.....

B ]q counts the number of flags of vector

spaces Vi< Vac...c Vs =Ty such that dimV; = Zji‘=1 k;.
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Tsallis 2-entropy

Proposition

Let (p1,...,ps) be a probability. Then,

n - 1. —1\l1-s _n?Ha(p1,...ps)/2 3
Pu ] (679 )"q (3)
For any a # 1, the function
H =L 1- oo
a(pl,...,ps) = Z P,- (4)
a-1 i=1

is called Tsallis a-entropy (actually, it was introduced by Havrda and
Charvat [3]).
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Important things to retain

(#) := (4 p_i) counts the words w € {0,1}" that have k ones.

(] =« :—k]q counts vector subspaces v of F} such that dim(v) = k.
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© Generalized information theory
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Types (following Csiszar): Terminology

Consider the surjection that counts the number of ones

7T {0,1}" —  [0,n]

(X1, ...,Xn) — Z?:l Xi

Q If 7(w) =k, we say that w is of type k.
@ Each set T :=n1(k) is called a type class. Note that

| Tonl = (:n) =exp(nHy(p,1-p)+o(n)).
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Types (following Csiszar): Typicality

Suppose the sequences are generated by independent coin tosses:
(Z41,... Zn) ~ Ber(p)®". Then n(Zy,...,2Z,) =: W, ~Bin(n, p).

Note that E(W,) = pn. Chebyshev’s inequality implies that
Wi € ¢ :=[np- n2*¢ np + n2*¢] with high probability (here 0 <¢<<1).

We can define the typical sequences to be n71(I,¢). Then, (Xi,..., Xs) is
typical w.h.p.

Typical sequences have gn ones, for g that satisfies |g— p| < nt=z —0.
Then,

m (o)=Y 1 Thl=exp(nHi(p,1-p)+o(n)).

qnelne
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Generalization

Let Gr(n, k) denote the set of all subspaces v of Fj such that dim(v) =k
(grassmannian). Set Gr(n) =u?_ Gr(n). Consider the surjection

n: Gr(n) — [0,n]
v — dim(v)

Q If nm(v) =k, we say that v is of type k.
@ Each set 7] :=7n7"(k) =Gr(n, k) is called a type class.

_ C(q)q"2 Ha(p1-p)/2.

n
| Tl = [
pn|,
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Probabilistic model

To talk about “typical subspaces”, we need a stochastic process that
generates at time n a generalized message V), € Gr(n). Moreover, we want

V), to contain in certain sense Vj,_1 (because this would be the analog of
(41, 2Zn)).

A clue: there exists a probability distribution Bing(n,0) on [0, nl, called
g-binomial with parameters neN and 6 >0, such that

n] gkgk(k-1)/2

Bing(kIn,0) = (-0:9)n

A variable Y ~ Bing(n,0) can be written as a sum Xj +---+ X, such that

X; ~ Ber (124
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Probabilistic model

Fix a a sequence of linear embeddings [F}q — [Ff7 — ..., and identify [Fg_1 with
its image in Fg.
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Probabilistic model

Fix a a sequence of linear embeddings [Ftl7 — [Ff7 ..
its image in Fg.

., and identify [Fg_1 with
Set V5 =0 and, at time n,
Q if X, =0, do nothing V,,=V,_1;

@ if X, =1, increase dimension: pick V,, at random, uniformly, from
Dilp(Vin-1).
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Probabilistic model

Fix a a sequence of linear embeddings [Ftl7 — [Ff7 — ..., and identify [Fg_1 with
its image in Fg.

Set V5 =0 and, at time n,
Q if X, =0, do nothing V,,=V,_1;
@ if X, =1, increase dimension: pick V,, at random, uniformly, from
Dilp(Vin-1).

The n-dilations of WCﬂ:g_l are

DiI,,(w):{vc[FZ dimv—dimw=1, wcv and v¢[FZ_1}. (5)
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Concentration of measure

Probability
0.6
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Figure: Bing(kIn,0) for g =3, n=1000, 6 =5x107°.
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The asymptotic formulas allow us to prove that
Qn—dq(n—d)(n—d—l)/2
(_Q;Q)n

n

n—d
q

Bing(n—din,0) =P (V,€Gr(n—d,n)) = — p(d),

and u defines a probability distribution on N.

We define a function A:[0,1) — N such that
A(p) = minimum d such that u([0,d])=1-p.
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Theorem

For any 6 € (0,1) and € >0 be such that p. :=1—¢ is a continuity point of
A, let A, = UZ(:S”) Gr(n—k,n) be the smallest set of the form
UZ:O Gr(n—k,n) such that P(V,€ AS) <e.

Then, there exists ng € N such that, for every n= nq,

Q@ Ar=U)Gr(n-k,n);

@ for any ve A, such that dimv = k,

log(P(Va=v)™)

—gHg(k/n) <6, (6)

The size of A, is optimal, up to the first order in the exponential: let
s(n,€) denote min{|By| : B, < Gr(n) and P(V, € B,)=1—-¢}; then

.1 o1 .n
lim —logg |Anl = lim —logg s(n,£) =lim 5 H2(A(pe)/n) = Alpe).  (7)
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© Some algebra
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Recurrence

Combinatorics says

n _ n kl +k2
ki, ko, k3 (ki + ko), ks |\ ki, ko
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Recurrence

Combinatorics says

n _ n kl +k2
ki, ko, k3 (ki + ko), ks |\ ki, ko

Set k; = pin; and apply limZIn(-), to obtain

p2

Hi(p1,p2,p3) = Hi(p1 + p2,p3) + (p1 + p2) H1 —_—
( ) ( )+ )H (P +p pr+p”
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Some references

3. If a choice be broken down into two suceessive choices, the original
H should be the weighted sum of the individual values of H. The
meaning of this is illustrated in Fig. 6. At the left we have three
possibilities p; = 4, p» = 3, p» = §. On the right we first choose be-
tween two possibilities each with probability %, and if the second occurs
make another choice with probabilities %, 4. The final results have
the same probabilities as before. We require, in this special case,
that

HG, LY = HG, 2 + 356,35

The coefficient % is because this second choice only occurs half the time.

1/2 1/2
1/2
1/3
Y2 2/3.8/3
1/e /3
1/6

Fig. 6—Decomposition of a choice from three possibilities.
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