Information theory for Tsallis 2-entropy

Juan Pablo Vigneaux
Institut de Mathématiques de Jussieu
Université Paris Diderot

July 26, 2018

Cornell University
 Library

arXiv.org > math-ph > arXiv:1807.05152

Mathematical Physics

A combinatorial interpretation for Tsallis 2-entropy

Juan Pablo Vigneaux
(Submittod on 13 Jul 2018)

While Shannon entropy is related to the growth rate of multinomial coefficients, we show that Tsallis 2-entropy is connected to their q-version; when q is a prime power, these coefficients count the number of flags in \mathbb{F}_{q}^{n} with prescribed length and dimensions $\left(\mathbb{F}_{q}\right.$ denotes the field of order q). In particular, the q-binomial coefficients count vector subspaces of given dimension. We obtain this way a combinatorial explanation for non-additivity. We show that statistical systems whose configurations are described by flags provide a frequentist justification for the maximum entropy principle with Tsallis statistics. We introduce then a discrete-time stochastic process associated to the q-binomial distribution, that generates at time n a vector subspace of \mathbb{F}_{q}^{n}. The concentration of measure on certain "typical subspaces" allows us to extend the asymptotic equipartition property to this setting. We discuss the applications to information theory, particularly to source coding

```
Subjects: Mathematical Physics (math-ph); Information Theory (cs.IT); Probability (math.PR)
Cite as: arXiv:1807.05152 [math-ph]
    (or arXiv:1807.05152v1 [math-ph] for this version)
```


Submission history

From: Juan Pablo Vigneaux [view email]
[v1] Fri, 13 Jul 2018 15:54:24 GMT (27kb)

Outline

(1) Entropies

(2) Generalized information theory

(3) Some algebra

Shannon entropy

The multinomial coefficient

$$
\binom{n}{k_{1}, \ldots, k_{s}}:=\frac{n!}{k_{1}!\cdots k_{s}!}
$$

counts the number of words $w \in \Sigma^{n}$, with $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$, such that σ_{i} appears k_{i} times.

Shannon entropy

The multinomial coefficient

$$
\binom{n}{k_{1}, \ldots, k_{s}}:=\frac{n!}{k_{1}!\cdots k_{s}!}
$$

counts the number of words $w \in \Sigma^{n}$, with $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$, such that σ_{i} appears k_{i} times.

From the point of view of probability and combinatorics, Shannon entropy $H_{1}\left(p_{1}, \ldots, p_{s}\right)=\sum_{i=1}^{s} p_{i} \ln p_{i}$ appears naturally in the asymptotic formula

$$
\begin{equation*}
\binom{n}{p_{1} n, \ldots, p_{s} n}=\exp \left(n H_{1}\left(p_{1}, \ldots, p_{s}\right)+O(\ln n)\right) \tag{1}
\end{equation*}
$$

q-multinomials

For given $q \in \mathbb{C} \backslash\{1\}$, define
(1) q-integers $[n]_{q}=\frac{q^{n}-1}{q-1}$,
(2) q-factorials: $[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$.
(3) q-multinomial coefficients by

$$
\left[\begin{array}{c}
n \tag{2}\\
k_{1}, \ldots, k_{s}
\end{array}\right]_{q}:=\frac{[n]_{q}!}{\left[k_{1}\right]_{q}!\cdots\left[k_{s}\right]_{q}!}
$$

where k_{1}, \ldots, k_{s} are such that $\sum_{i=1}^{s} k_{i}=n$.

q-multinomials

For given $q \in \mathbb{C} \backslash\{1\}$, define
(1) q-integers $[n]_{q}=\frac{q^{n}-1}{q-1}$,
(2) q-factorials: $[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$.
(3) q-multinomial coefficients by

$$
\left[\begin{array}{c}
n \tag{2}\\
\left.k_{1}, \ldots, k_{s}\right]_{q}
\end{array}\right]_{q}=\frac{[n]_{q}!}{\left[k_{1}\right]_{q}!\cdots\left[k_{s}\right]_{q}!}
$$

where k_{1}, \ldots, k_{s} are such that $\sum_{i=1}^{s} k_{i}=n$.

Remark

When q is a prime power, $\left[\begin{array}{c}n \\ k_{1}, \ldots, k_{s}\end{array}\right]_{q}$ counts the number of flags of vector spaces $V_{1} \subset V_{2} \subset \ldots \subset V_{s}=\mathbb{F}_{q}^{n}$ such that $\operatorname{dim} V_{i}=\sum_{j=1}^{i} k_{j}$.

Tsallis 2-entropy

Proposition

Let $\left(p_{1}, \ldots, p_{s}\right)$ be a probability. Then,

$$
\left[\begin{array}{c}
n \tag{3}\\
p_{1} n, \ldots, p_{s} n
\end{array}\right]_{q} \sim\left(q^{-1} ; q^{-1}\right)_{\infty}^{1-s} q^{n^{2} H_{2}\left(p_{1}, \ldots, p_{s}\right) / 2}
$$

For any $\alpha \neq 1$, the function

$$
\begin{equation*}
H_{\alpha}\left(p_{1}, \ldots, p_{s}\right):=\frac{1}{\alpha-1}\left(1-\sum_{i=1}^{s} p_{i}^{\alpha}\right) \tag{4}
\end{equation*}
$$

is called Tsallis α-entropy (actually, it was introduced by Havrda and Charvát [3]).

Important things to retain

$\binom{n}{k}:=\binom{n}{k, n-k}$ counts the words $w \in\{0,1\}^{n}$ that have k ones.
$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}:=\left[\begin{array}{c}n \\ k, n-k\end{array}\right]_{q}$ counts vector subspaces v of \mathbb{F}_{q}^{n} such that $\operatorname{dim}(v)=k$.

Outline

(1) Entropies

(2) Generalized information theory

(3) Some algebra

Types (following Csiszár): Terminology

Consider the surjection that counts the number of ones

$$
\begin{array}{lclc}
\pi: & \{0,1\}^{n} & \rightarrow & \llbracket 0, n \rrbracket \\
& \left(x_{1}, \ldots, x_{n}\right) & \mapsto & \sum_{i=1}^{s} x_{i}
\end{array}
$$

(1) If $\pi(w)=k$, we say that w is of type k.
(2) Each set $T_{k}^{n}:=\pi^{-1}(k)$ is called a type class. Note that

$$
\left|T_{p n}^{n}\right|=\binom{n}{p n}=\exp \left(n H_{1}(p, 1-p)+o(n)\right) .
$$

Types (following Csiszár): Typicality

Suppose the sequences are generated by independent coin tosses: $\left(Z_{1}, \ldots, Z_{n}\right) \sim \operatorname{Ber}(p)^{\otimes n}$. Then $\pi\left(Z_{1}, \ldots, Z_{n}\right)=: W_{n} \sim \operatorname{Bin}(n, p)$.

Note that $\mathbb{E}\left(W_{n}\right)=p n$. Chebyshev's inequality implies that $W_{n} \in I_{n, \xi}:=\llbracket n p-n^{\frac{1}{2}+\xi}, n p+n^{\frac{1}{2}+\xi} \rrbracket$ with high probability (here $0<\xi \ll \frac{1}{2}$).

We can define the typical sequences to be $\pi^{-1}\left(I_{n, \xi}\right)$. Then, $\left(X_{1}, \ldots, X_{n}\right)$ is typical w.h.p.

Remark

Typical sequences have $q n$ ones, for q that satisfies $|q-p| \leq n^{\xi-\frac{1}{2}} \rightarrow 0$. Then,

$$
\left|\pi^{-1}\left(I_{n, \xi}\right)\right|=\sum_{q n \in I_{n, \xi}}\left|T_{q n}^{n}\right|=\exp \left(n H_{1}(p, 1-p)+o(n)\right) .
$$

Generalization

Let $\operatorname{Gr}(n, k)$ denote the set of all subspaces v of \mathbb{F}_{q}^{n} such that $\operatorname{dim}(v)=k$ (grassmannian). Set $\operatorname{Gr}(n)=\cup_{i=0}^{n} \operatorname{Gr}(n)$. Consider the surjection

$$
\begin{array}{cccc}
\pi: \quad \operatorname{Gr}(n) & \rightarrow & \llbracket 0, n \rrbracket \\
& v & \mapsto & \operatorname{dim}(v)
\end{array}
$$

(1) If $\pi(v)=k$, we say that v is of type k.
(2) Each set $T_{k}^{n}:=\pi^{-1}(k)=\operatorname{Gr}(n, k)$ is called a type class.

$$
\left|T_{p n}^{n}\right|=\left[\begin{array}{c}
n \\
p n
\end{array}\right]_{q}=C(q) q^{n^{2} H_{2}(p, 1-p) / 2}
$$

Probabilistic model

To talk about "typical subspaces", we need a stochastic process that generates at time n a generalized message $V_{n} \in \operatorname{Gr}(n)$. Moreover, we want V_{n} to contain in certain sense V_{n-1} (because this would be the analog of $\left.\left(Z_{1}, \ldots, Z_{n}\right)\right)$.

A clue: there exists a probability distribution $\operatorname{Bin}_{q}(n, \theta)$ on $\llbracket 0, n \rrbracket$, called q-binomial with parameters $n \in \mathbb{N}$ and $\theta>0$, such that

$$
\operatorname{Bin}_{q}(k \mid n, \theta)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{\theta^{k} q^{k(k-1) / 2}}{(-\theta ; q)_{n}}
$$

A variable $Y \sim \operatorname{Bin}_{q}(n, \theta)$ can be written as a sum $X_{1}+\cdots+X_{n}$ such that $X_{i} \sim \operatorname{Ber}\left(\frac{\theta q^{i-1}}{1+\theta q^{i-1}}\right)$.

Probabilistic model

Fix a a sequence of linear embeddings $\mathbb{F}_{q}^{1} \hookrightarrow \mathbb{F}_{q}^{2} \hookrightarrow \ldots$, and identify \mathbb{F}_{q}^{n-1} with its image in \mathbb{F}_{q}^{n}.

Probabilistic model

Fix a a sequence of linear embeddings $\mathbb{F}_{q}^{1} \hookrightarrow \mathbb{F}_{q}^{2} \hookrightarrow \ldots$, and identify \mathbb{F}_{q}^{n-1} with its image in \mathbb{F}_{q}^{n}.

Set $V_{0}=0$ and, at time n,
(1) if $X_{n}=0$, do nothing $V_{n}=V_{n-1}$;
(2) if $X_{n}=1$, increase dimension: pick V_{n} at random, uniformly, from $\operatorname{Dil}_{n}\left(V_{n-1}\right)$.

Probabilistic model

Fix a a sequence of linear embeddings $\mathbb{F}_{q}^{1} \hookrightarrow \mathbb{F}_{q}^{2} \hookrightarrow \ldots$, and identify \mathbb{F}_{q}^{n-1} with its image in \mathbb{F}_{q}^{n}.

Set $V_{0}=0$ and, at time n,
(1) if $X_{n}=0$, do nothing $V_{n}=V_{n-1}$;
(0) if $X_{n}=1$, increase dimension: pick V_{n} at random, uniformly, from $\operatorname{Dil}_{n}\left(V_{n-1}\right)$.

The n-dilations of $w \subset \mathbb{F}_{q}^{n-1}$ are

$$
\begin{equation*}
\operatorname{Dil}_{n}(w)=\left\{v \subset \mathbb{F}_{q}^{n}: \operatorname{dim} v-\operatorname{dim} w=1, w \subset v \text { and } v \not \subset \mathbb{F}_{q}^{n-1}\right\} . \tag{5}
\end{equation*}
$$

Concentration of measure

The asymptotic formulas allow us to prove that
$\operatorname{Bin}_{q}(n-d \mid n, \theta)=\mathbb{P}\left(V_{n} \in \operatorname{Gr}(n-d, n)\right)=\left[\begin{array}{c}n \\ n-d\end{array}\right]_{q} \frac{\theta^{n-d} q^{(n-d)(n-d-1) / 2}}{(-\theta ; q)_{n}} \rightarrow \mu(d)$,
and μ defines a probability distribution on \mathbb{N}.
We define a function $\Delta:[0,1) \rightarrow \mathbb{N}$ such that $\Delta(p)=$ minimum d such that $\mu(\llbracket 0, d \rrbracket) \geq 1-p$.

Theorem

For any $\delta \in(0,1)$ and $\varepsilon>0$ be such that $p_{\varepsilon}:=1-\varepsilon$ is a continuity point of Δ, let $A_{n}=\bigcup_{k=0}^{d\left(A_{n}\right)} \operatorname{Gr}(n-k, n)$ be the smallest set of the form
$\cup_{k=0}^{d} \operatorname{Gr}(n-k, n)$ such that $\mathbb{P}\left(V_{n} \in A_{n}^{c}\right) \leq \varepsilon$.
Then, there exists $n_{0} \in \mathbb{N}$ such that, for every $n \geq n_{0}$,
(1) $A_{n}=\bigcup_{k=0}^{\Delta\left(p_{\varepsilon}\right)} \operatorname{Gr}(n-k, n)$;
(2) for any $v \in A_{n}$ such that $\operatorname{dim} v=k$,

$$
\begin{equation*}
\left|\frac{\log _{q}\left(\mathbb{P}\left(V_{n}=v\right)^{-1}\right)}{n}-\frac{n}{2} H_{2}(k / n)\right| \leq \delta . \tag{6}
\end{equation*}
$$

The size of A_{n} is optimal, up to the first order in the exponential: let $s(n, \varepsilon)$ denote $\min \left\{\left|B_{n}\right|: B_{n} \subset \operatorname{Gr}(n)\right.$ and $\left.\mathbb{P}\left(V_{n} \in B_{n}\right) \geq 1-\varepsilon\right\}$; then

$$
\begin{equation*}
\lim _{n} \frac{1}{n} \log _{q}\left|A_{n}\right|=\lim _{n} \frac{1}{n} \log _{q} s(n, \varepsilon)=\lim _{n} \frac{n}{2} H_{2}\left(\Delta\left(p_{\varepsilon}\right) / n\right)=\Delta\left(p_{\varepsilon}\right) . \tag{7}
\end{equation*}
$$

Outline

(1) Entropies

(2) Generalized information theory

(3) Some algebra

Recurrence

Combinatorics says

$$
\binom{n}{k_{1}, k_{2}, k_{3}}=\binom{n}{\left(k_{1}+k_{2}\right), k_{3}}\binom{k_{1}+k_{2}}{k_{1}, k_{2}}
$$

Recurrence

Combinatorics says

$$
\binom{n}{k_{1}, k_{2}, k_{3}}=\binom{n}{\left(k_{1}+k_{2}\right), k_{3}}\binom{k_{1}+k_{2}}{k_{1}, k_{2}}
$$

Set $k_{i}=p_{i} n_{i}$ and apply $\lim \frac{1}{n} \ln (-)$, to obtain

$$
H_{1}\left(p_{1}, p_{2}, p_{3}\right)=H_{1}\left(p_{1}+p_{2}, p_{3}\right)+\left(p_{1}+p_{2}\right) H_{1}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right) .
$$

Some references

3. If a choice be broken down into two successive choices, the original H should be the weighted sum of the individual values of H. The meaning of this is illustrated. in Fig. 6. At the left we have three possibilities $p_{1}=\frac{1}{2}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{6}$. On the right we first choose between two possibilities each with probability $\frac{1}{2}$, and if the second occurs make another choice with probabilities $\frac{2}{3}, \frac{1}{3}$. The final results have the same probabilities as before. We require, in this special case, that

$$
H\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H\left(\frac{2}{3}, \frac{1}{3}\right)
$$

The coefficient $\frac{1}{2}$ is because this second choice only occurs half the time.

Fig. 6-Decomposition of at choice from three ןossibilities.

园
P．Baudot and D．Bennequin，The homological nature of entropy，Entropy， 17 （2015），pp．3253－3318．

苞
I．Csiszár and J．Körner，Information theory：coding theorems for discrete memoryless systems，Probability and mathematical statistics，Academic Press， 1981.

T．Havrda and F．Charvát，Quantification method of classification processes． concept of structural a－entropy，Kybernetika， 3 （1967），pp．30－35．

囯 J．P．Vigneaux，The structure of information：from probability to homology，ArXiv e－prints，（2017）．

T－J．P．Vigneaux，A combinatorial interpretation for tsallis 2－entropy，arXiv preprint arXiv：1807．05152，（2018）．

