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Shannon entropy

The multinomial coe�cient(
n

k1, ...,ks

)
:= n!

k1! · · ·ks !

counts the number of words w ∈Σn, with Σ= {σ1, ...,σs }, such that σi

appears ki times.

From the point of view of probability and combinatorics, Shannon entropy
H1(p1, ...,ps)=∑s

i=1pi lnpi appears naturally in the asymptotic formula(
n

p1n, ...,psn

)
= exp(nH1(p1, ...,ps)+O(lnn)) (1)
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q-multinomials

For given q ∈Cà {1}, de�ne

1 q-integers [n]q = qn−1
q−1 ,

2 q-factorials: [n]q! := [n]q[n−1]q · · · [1]q.
3 q-multinomial coe�cients by[

n

k1, ...,ks

]
q

:= [n]q!

[k1]q! · · · [ks ]q!
, (2)

where k1, ...,ks are such that
∑s

i=1ki = n.

Remark

When q is a prime power,
[ n
k1,...,ks

]
q
counts the number of �ags of vector

spaces V1 ⊂V2 ⊂ ... ⊂Vs = Fnq such that dimVi =
∑i

j=1kj .
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Tsallis 2-entropy

Proposition

Let (p1, ...,ps) be a probability. Then,[
n

p1n, ...,psn

]
q

∼ (q−1;q−1)1−s∞ qn
2H2(p1,...,ps)/2. (3)

For any α 6= 1, the function

Hα(p1, ...,ps) := 1

α−1

(
1−

s∑
i=1

pαi

)
(4)

is called Tsallis α-entropy (actually, it was introduced by Havrda and
Charvát [3]).
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Important things to retain

(n
k

)
:= ( n

k ,n−k
)
counts the words w ∈ {0,1}n that have k ones.[n

k

]
q :=

[ n
k ,n−k

]
q
counts vector subspaces v of Fnq such that dim(v)= k .
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Types (following Csiszár): Terminology

Consider the surjection that counts the number of ones

π : {0,1}n → �0,n�
(x1, ...,xn) 7→ ∑s

i=1 xi

1 If π(w)= k , we say that w is of type k .

2 Each set T n
k :=π−1(k) is called a type class. Note that

|T n
pn| =

(
n

pn

)
= exp(nH1(p,1−p)+o(n)).
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Types (following Csiszár): Typicality

Suppose the sequences are generated by independent coin tosses:
(Z1, ...,Zn)∼Ber(p)⊗n. Then π(Z1, ...,Zn)=:Wn ∼Bin(n,p).

Note that E(Wn)= pn. Chebyshev's inequality implies that

Wn ∈ In,ξ := �np−n
1
2+ξ,np+n

1
2+ξ� with high probability (here 0< ξ<< 1

2
).

We can de�ne the typical sequences to be π−1(In,ξ). Then, (X1, ...,Xn) is
typical w.h.p.

Remark

Typical sequences have qn ones, for q that satis�es |q−p| ≤ nξ−
1
2 → 0.

Then,
|π−1(In,ξ)| =

∑
qn∈In,ξ

|T n
qn| = exp(nH1(p,1−p)+o(n)).
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Generalization

Let Gr(n,k) denote the set of all subspaces v of Fnq such that dim(v)= k
(grassmannian). Set Gr(n)=∪n

i=0Gr(n). Consider the surjection

π : Gr(n) → �0,n�
v 7→ dim(v)

1 If π(v)= k , we say that v is of type k .

2 Each set T n
k :=π−1(k)=Gr(n,k) is called a type class.

|T n
pn| =

[
n

pn

]
q

=C (q)qn
2H2(p,1−p)/2.
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Probabilistic model

To talk about �typical subspaces�, we need a stochastic process that
generates at time n a generalized message Vn ∈Gr(n). Moreover, we want
Vn to contain in certain sense Vn−1 (because this would be the analog of
(Z1, ...,Zn)).

A clue: there exists a probability distribution Binq(n,θ) on �0,n�, called
q-binomial with parameters n ∈N and θ > 0, such that

Binq(k |n,θ)=
[
n

k

]
q

θkqk(k−1)/2

(−θ;q)n
.

A variable Y ∼Binq(n,θ) can be written as a sum X1+·· ·+Xn such that

Xi ∼Ber
(

θqi−1

1+θqi−1

)
.
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Probabilistic model

Fix a a sequence of linear embeddings F1q ,→ F2q ,→ ..., and identify Fn−1q with
its image in Fnq.

Set V0 = 0 and, at time n,

1 if Xn = 0, do nothing Vn =Vn−1;
2 if Xn = 1, increase dimension: pick Vn at random, uniformly, from

Diln(Vn−1).

The n-dilations of w ⊂ Fn−1q are

Diln(w)= {v ⊂ Fnq : dimv −dimw = 1, w ⊂ v and v 6⊂ Fn−1q }. (5)

July 26, 2018 13 / 20



Probabilistic model

Fix a a sequence of linear embeddings F1q ,→ F2q ,→ ..., and identify Fn−1q with
its image in Fnq.

Set V0 = 0 and, at time n,

1 if Xn = 0, do nothing Vn =Vn−1;
2 if Xn = 1, increase dimension: pick Vn at random, uniformly, from

Diln(Vn−1).

The n-dilations of w ⊂ Fn−1q are

Diln(w)= {v ⊂ Fnq : dimv −dimw = 1, w ⊂ v and v 6⊂ Fn−1q }. (5)

July 26, 2018 13 / 20



Probabilistic model

Fix a a sequence of linear embeddings F1q ,→ F2q ,→ ..., and identify Fn−1q with
its image in Fnq.

Set V0 = 0 and, at time n,

1 if Xn = 0, do nothing Vn =Vn−1;
2 if Xn = 1, increase dimension: pick Vn at random, uniformly, from

Diln(Vn−1).

The n-dilations of w ⊂ Fn−1q are

Diln(w)= {v ⊂ Fnq : dimv −dimw = 1, w ⊂ v and v 6⊂ Fn−1q }. (5)

July 26, 2018 13 / 20



Concentration of measure
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Figure: Binq(k |n,θ) for q = 3, n= 1000, θ = 5×10−5.
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The asymptotic formulas allow us to prove that

Binq(n−d |n,θ)=P(Vn ∈Gr(n−d ,n))=
[

n

n−d

]
q

θn−dq(n−d)(n−d−1)/2

(−θ;q)n
→µ(d),

and µ de�nes a probability distribution on N.

We de�ne a function ∆ : [0,1)→N such that
∆(p)= minimum d such that µ(�0,d�)≥ 1−p.
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Theorem

For any δ ∈ (0,1) and ε> 0 be such that pε := 1−ε is a continuity point of

∆, let An =⋃d(An)
k=0 Gr(n−k ,n) be the smallest set of the form⋃d

k=0Gr(n−k ,n) such that P(Vn ∈Ac
n)≤ ε.

Then, there exists n0 ∈N such that, for every n≥ n0,

1 An =⋃∆(pε)
k=0 Gr(n−k ,n);

2 for any v ∈An such that dimv = k ,∣∣∣∣∣ logq(P(Vn = v)−1)
n

− n

2
H2(k/n)

∣∣∣∣∣≤ δ. (6)

The size of An is optimal, up to the �rst order in the exponential: let

s(n,ε) denote min{ |Bn| : Bn ⊂Gr(n) and P(Vn ∈Bn)≥ 1−ε }; then

lim
n

1

n
logq |An| = lim

n

1

n
logq s(n,ε)= lim

n

n

2
H2(∆(pε)/n)=∆(pε). (7)
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Recurrence

Combinatorics says (
n

k1,k2,k3

)
=

(
n

(k1+k2),k3

)(
k1+k2
k1,k2

)

Set ki = pini and apply lim 1

n ln(−), to obtain

H1(p1,p2,p3)=H1(p1+p2,p3)+ (p1+p2)H1(
p1

p1+p2
,

p2
p1+p2

).
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