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Shannon entropy

Shannon (1948) characterized the functions S1 := S
(n)
1

:∆n →R, given by

S1(p0, ...,pn) :=−
n∑

k=0
pi lnpi , (1)

as the only continuous functions (up to a multiplicative constant), such
that S1(1/n, ...,1/n) is monotonic in n and

�If a choice be broken down into two successive choices, the original S1
should be the weighted sum of the individual values of S1.�

p1

p2

p3

p1+p2

p1
p1+p2

p2
p1+p2

p3

1

S1(p1,p2,p3)=

S1(p1+p2,p3)+(p1+p2)S1
(

p1
p1+p2

,
p2

p1+p2

)
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Structural α-entropy (Tsallis α-entropy)

Havrda and Charvát introduced a generalized entropy, for each α> 0, α 6= 1:

Sα(p0, ...,pn)=Kα

(
1−

n∑
i=0

pαi

)
. (2)

It satis�es a deformed version of the axioms.

p1

p2

p3

p1+p2

p1
p1+p2

p2
p1+p2

p3

1

S1(p1,p2,p3)=

S1(p1+p2,p3)+(p1+p2)
αS1

(
p1

p1+p2
,

p2
p1+p2

)

Why these axioms? What is their role in information theory?
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Multinomial coe�cients

The multinomial coe�cient(
n

k1, ...,ks

)
:= n!

k1! · · ·ks !
= Γ(n+1)

Γ(k1+1) · · ·Γ(ks +1)

counts the number of words w ∈Σn, with Σ= {σ1, ...,σs }, such that σi

appears ki times.

From the point of view of probability and combinatorics, Shannon entropy
S1(p1, ...,ps)=−∑s

i=1pi lnpi appears naturally in the asymptotic formula(
n

p1n, ...,psn

)
= exp(nS1(p1, ...,ps)+O(lnn)) (3)
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q-multinomials

Let q be an indeterminate. De�ne

1 q-integers [n]q = qn−1
q−1 ,

2 q-factorials: [n]q! := [n]q[n−1]q · · · [1]q.
3 q-multinomial coe�cients by[

n

k1, ...,ks

]
q

:= [n]q!

[k1]q! · · · [ks ]q!
, (4)

where k1, ...,ks are such that
∑s

i=1ki = n.

Proposition

When q is a prime power,
[ n
k1,...,ks

]
q
counts the number of �ags of vector

spaces V1 ⊂V2 ⊂ ... ⊂Vs = Fnq such that dimVi =
∑i

j=1kj .
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Tsallis 2-entropy in combinatorics

Proposition (V., 2018)

Let (p1, ...,ps) be a probability. Then,[
n

p1n, ...,psn

]
q

= qn
2S2(p1,...,ps)/2+o(n2). (5)

Here

S2(p1, ...,ps) := 1−
s∑

i=1
p2i (6)

is Tsallis 2-entropy (with the appropriate leading constant).
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Recurrence (Shannon entropy)

The combinatorial identity(
n

p1n,p2n,p3n

)
=

(
n

(p1+p2)n,p3n

)(
(p1+p2)n

p1n,p2n

)

becomes asymptotically

exp(nS1(p1,p2,p3)+o(n))=

exp

(
n

{
S1(p1+p2,p3)+ (p1+p2)S1

(
p1

p1+p2
,

p2
p1+p2

)}
+o(n)

)
.
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Recurrence (α-entropy)

Since [
n

p1n, ...,psn

]
q

= qn
2S2(p1,...,ps)/2+o(n2),

the multiplicative relation[
n

p1n,p2n,p3n

]
q

=
[

n

(p1+p2)n,p3n

]
q

[
(p1+p2)n

p1n,p2n

]
q

,

implies

S2(p1,p2,p3)= S2(p1+p2,p3)+ (p1+p2)
2S2

(
p1

p1+p2
,

p2
p1+p2

)
.
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�[T]he actual message is one selected from a set of possible messages. The
system must be designed to operate for each possible selection, not just the
one which will actually be chosen since this is unknown at the time of
design.� (Shannon)

The source is described by a probabilistic model that quanti�es the
likelihood of any possible message.

June 14, 2019 13 / 45



A q-deformation of Shannon's theory

Concept Shannon case q-case

Message at time
n (n-message)

Word w ∈ {0,1}n
Vector subspace

v ⊂ Fnq
Type Number of ones Dimension

Number of
n-messages of

type k

(
n

k

) [
n

k

]
q

Probability of a
n-message of

type k
ξk(1−ξ)n−k θkqk(k−1)/2

(−θ;q)n

Where q is a prime power, and θ > 0, ξ ∈ [0,1] are arbitrary parameters.
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The q-binomial distribution

The binomial theorem implies that, for any ξ ∈ [0,1],

1=
n∑

k=0

(
n

k

)
ξk(1−ξ)n−k , (7)

and also that Y ∼Bin(n,ξ) appears as the sum Z1+·· ·Zn, with Zi ∼Ber(ξ).

In turn, Gauss' binomial formula says that

(1+θ)(1+θq) · · ·(1+θqn−1)︸ ︷︷ ︸
=:(−θ;q)n

=
n∑

k=0

[
n

k

]
q

θkqk(k−1)/2. (8)

The q-binomial distribution has probability mass function

k 7→ [n
k

]
q
θkqk(k−1)/2
(−θ;q)n . A variable Y ∼Binq(n,θ) equals (in law) X1+·· ·+Xn,

where Xi ∼Ber
(

θqi−1

1+θqi−1

)
.
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Grassmannian process I

Fix a sequence of embeddings F1q ,→ F2q ,→ ....

We introduce a stochastic process that generates at time n a generalized
message Vn ⊂ Fnq such that

1 Vn−1 can be recovered from Vn (as Vn∩Fn−1q );

2 the probability of Vn = v , when dimv = k , equals

θkqk(k−1)/2

(−θ;q)n
.
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Grassmannian process II: How?

For w ⊂ Fn−1q ,

Diln(w) := {v ⊂ Fnq | dimv −dimw = 1,

w ⊂ v and v 6⊂ Fn−1q }.

{Xi }i∈N are independent, Xi ∼Ber
(

θqi−1

1+θqi−1

)
. Set V0 = 0 and, at time n,

1 if Xn = 0, do nothing Vn =Vn−1;
2 if Xn = 1, increase dimension: pick Vn at random, uniformly, from

Diln(Vn−1).

June 14, 2019 17 / 45



Theorem (Generalized AEP)

For every δ> 0 and almost every ε> 0 (except a countable set), there exist

n0 ∈N and sets An =⋃∆(ε)
k=0 Gr(n−k ,n), for all n≥ n0, such that

1 ∆(ε) is an integer that just depends on ε;

2 P(Vn ∈Ac
n)≤ ε;

3 for any v ∈An such that dimv = k ,∣∣∣∣∣ logq(P(Vn = v)−1)
n

− n

2
S2(k/n)

∣∣∣∣∣≤ δ. (9)

Moreover, the size of An is optimal, up to the �rst order in the exponential:

if s(n,ε) is the cardinality of the smallest set of subspaces of Fnq that

accumulate probability 1−ε, then

lim
n

1

n
logq |An| = lim

n

1

n
logq s(n,ε)= lim

n

n

2
S2(∆(ε)/n)=∆(ε). (10)
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De�nition

An information structure is a couple (S,M), where S (observables,
experiments, variables...) is a small category such that

1 S has a terminal object, denoted 1;

2 S is a skeletal partially ordered set (poset);

3 for objects X ,Y ,Z ∈ObS , if Z →X and Z →Y , then the categorical
product X ∧Y exists;

and M is a conservative covariant functor (the possible outputs) from S

into the category MeasurableSpacesurj , X 7→M(X )= (E (X ),B(X )), that
satis�es

4 E (1)∼= {∗};

5 for every X ∈ObS and any x ∈E (X ), the σ-algebra B(X ) contains the
singleton {x};

6 for every diagram X X ∧Y Y←→π ←→σ the measurable map
E (X ∧Y ) ,→E (X )×E (Y ),z 7→ (x(z),y(z)) := (π∗(z),σ∗(z)) is an
injection.

June 14, 2019 21 / 45



X ∧P P

P ∧V X 1

X ∧V V

←→←

→

←

→← →

←

→

← → ←→

← →

←→

← →

(EX ×EP ,2EX ⊗P) (EP ,P)

(M ,M) (EX ,2EX ) {∗}

(EX ×EV ,2EX ⊗V) (EV ,V)

←→←
→

←
→← →

←

→

← → ←→

← →

←→

← →

where M ,→EP ×EV and EX := { , , , , , }.
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X1

X2

X3
X1∧X3

X2∧X3X1∧X2

X1∧X2∧X3

with E (Xi ) arbitrary, E (Xi ∧Xj)=E (Xi )×E (Xj), and
E (X1∧X2∧X3)=E (X1)×E (X2)×E (X2).
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Information topos

The category of covariant functors [S,Sets] as well as that of contravariant
functors [Sop ,Sets] are important in applications. (For example,
probabilities de�ne a covariant functor; the probabilitic functionals�like
entropy�, a contravariant one.)

Both categories are Grothendieck topoi (related to geometric intuitions,
logical interpretations, general algebraic constructions...).

There is an appropriate notion of localization: marginalizations induced by
the surjections of M.

We want to study the geometrical invariants attached to these functors
(that are algebraic analogs of vector bundles).
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Information cohomology: De�nition

For each X ∈ObS, the set SX := {Y |X →Y } is a monoid under the
multiplication (Y ,Z ) 7→Y ∧Z ('joint variable').

Each arrow X →Y induces an inclusion SY →SX , which de�nes a
particular presheaf (contravariant functor). Let A denote the presheaf of
algebras X 7→R[SX ] (�nite linear combinations).

The category Mod(A ) of A -modules is an abelian category (i.e. it
behaves like the category of modules over a ring). We can introduce the
derived functors of HomA (R,−), denoted Ext•(R,−).
De�nition

The information cohomology with coe�cients in an A -module M is

H•(S,M) :=Ext•(R,M).
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Resolution

There is a bar resolution B• →R that allows us to compute H•(S,M) as
the homology of a di�erential complex (Nat(B•,M),δ).

We get cochains, cocycles and coboundaries.

Important to retain: n-cochains ϕ ∈Nat(Bn,M) are characterized by
coherent/functorial collections of elements in M indexed by n-tuples of
elements in ObS (since each Bn(X ) is a free module); they are n-cocyles
when they satisfy δφ= 0; an n-coboundary is an n-cochain φ that comes
from an (n−1)-cochain ψ, such that ϕ= δψ.

We will see that the 1-cocycle condition encodes the recurrence properties
of entropies and multinomial coe�cients.
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Probabilistic case

Discrete variables: we suppose that each EX is �nite.

p1

p2

p3

X

p1+p2

p1
p1+p2

p2
p1+p2

p3

1
Y X

Let Q :S→Sets be a functor that
associates to each X a set Q(X ) of
probabilities on EX (i.e. functions
p :EX → [0,1] such that

∑
x∈EX

p(x)= 1)
closed under conditioning by variables in S.
Every arrow X →Y in S translates into a
surjection π :EX →EY that induces a
marginalization π∗ :=Q(π) :Q(X )→Q(Y )
given by

π∗p(y)=
∑

x∈π−1(y)
p(x).

NB: Whenever S has no initial object, a section q ∈ Γ(Q) :=Hom[S,Sets](∗,Q) is just a

coherent collection of probabilities that does not necessarily come from a global law,
called �pseudo-marginal� in the literature.
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Probabilistic functionals

Let F (X ) be the additive abelian group of measurable real-valued functions
on Q(X ), and F (π) : F (Y )→ F (X ) (contravariant) such that
F (π)(φ)=φ◦π∗.

In the previous example: π∗f (p1,p2,p3)= f (p1+p2,p3).

For each Y ∈SX and φ ∈F (X ), de�ne

(Y .φ)(P)= ∑
y∈EY

PX (Y=y) 6=0

P(Y = y)αφ(PX |Y=y ). (11)

This turns F into an A -module that we denote Fα.
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Probabilistic information cohomology: H•(S,Fα)

The 1-cocycles are characterized collections of functionals{
φ[X ] :Q(X )→R

}
X∈ObS such that

0=X .φ[Y ]−φ[XY ]+φ[X ] (12)

Proposition (Baudot-Bennequin, 2015; V. 2017)

The only 1-cocycles are given by multiples of

Sα[X ]=
{
−∑

x∈EX
P(x) logP(x) when α= 1∑

x∈EX
P(x)α−1 when α 6= 1

.

Globally, the number of free constants depends on the number β0 of
connected components of S\ {1},

H1(S,F1)∼=Rβ0 ; H1(S,Fα)∼=Rβ0−1 when α 6= 1.
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Information cohomology: Combinatorial case

Let C :S→Sets be a functor that associates to each X the set C (X ) of
functions ν :EX →N such that ‖ν‖ :=∑

x∈EX
ν(x)> 0 (counting functions,

histograms...).

Given π :X →Y , the arrow π∗ :=C (π) :C (X )→C (Y ) is given by
π∗ν(y)=∑

x∈π−1(y)ν(x).

Let G (X ) be the multiplicative abelian group of measurable (0,∞)-valued
functions on C (X ), and G (π) :G (Y )→G (X ) (contravariant) such that
G (π)(φ)=φ◦π∗.

For each Y ∈SX and φ ∈G (X ), de�ne

(Y .φ)(ν)= ∏
y∈EY

ν(Y=y)6=0

φ(ν|Y=yi ). (13)

where ν|Y=yi is a restriction. This turns G into an A -module.
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Computing H•(S,G )

Proposition (V. 2019)

1 H0(S,G ) has dimension 1 and is generated by the exponential

function.

2 The 1-cocycles are generalized (Fontené-Ward) multinomial

coe�cients:

φ[Y ](ν)= [‖ν‖]D !∏
y∈EY

[ν(y)]D !

where [0]D != 1 and [n]D !=DnDn−1 · · ·D1, for any sequence {Di }i≥1
such that D1 = 1.

The 0-cocycle condition reads: ϕ(‖ν‖)=ϕ(ν1)ϕ(ν2) · · ·ϕ(νs ).
The 1-cocycle con�tion reads: φ[XY ]= (X .φ[Y ])φ[X ] e.g.(

n

k1,k2,k3

)
=

(
n

k1+k2,k3

)(
k1+k2
k1,k2

)

Dn = n: usual multinomial coe�cients; Dn = qn−1
q−1 : the q-multinomial coe�cients.
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Asymptotic relation

Example:

0-cocycles: the exponential exp(k ‖ν‖) is a combinatorial 0-cocycle,
the constant k is a probabilistic 0-cocycle.

1-cocycles: (
n

p1n, ...,psn

)
= exp(nS1(p1, ...,ps)+o(n))

and [
n

p1n, ...,psn

]
q

= exp(n2
lnq

2
S2(p1, ...,ps)+o(n2)).
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Recurrence (Shannon entropy)

The combinatorial identity(
n

p1n,p2n,p3n

)
=

(
n

(p1+p2)n,p3n

)(
(p1+p2)n

p1n,p2n

)

becomes asymptotically

exp(nS1(p1,p2,p3)+o(n))=

exp

(
n

{
S1(p1+p2,p3)+ (p1+p2)S1

(
p1

p1+p2
,

p2
p1+p2

)}
+o(n)

)
.
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Recurrence (α-entropy)

Since [
n

p1n, ...,psn

]
q

= qn
2S2(p1,...,ps)/2+o(n2),

the multiplicative relation[
n

p1n,p2n,p3n

]
q

=
[

n

(p1+p2)n,p3n

]
q

[
(p1+p2)n

p1n,p2n

]
q

,

implies

S2(p1,p2,p3)= S2(p1+p2,p3)+ (p1+p2)
2S2

(
p1

p1+p2
,

p2
p1+p2

)
.
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Asymptotic relation I

Proposition (V. 2019)

Let φ be a combinatorial 1-cocycle. Suppose that, for every variable X ,

there exists a measurable function ψ[X ] :∆(X )→R with the following

property: for every sequence of counting functions {νn}n≥1 ⊂CX such that

1 ‖νn‖→∞, and

2 for every x ∈EX , νn(x)/‖νn‖→ p(x) as n→∞
the asymptotic formula

φ[X ](νn)= exp(‖νn‖αψ[X ](p)+o(‖νn‖α))

holds. Then ψ is a 1-cocycle of type α, i.e. f ∈Z 1(S,Fα).
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Continuous variables

Let E be a vector space, and S a category of subspaces of E , with arrows
corresponding to inclusions. We suppose it is conditionally closed under
intersections: if Z ,V ,W are objects of S such that Z ⊂V and Z ⊂W , then
V ∩W ∈ObS.

Let E be the functor V 7→EV :=E/V , sending V ⊂W to the canonical
projection πWV :EV →EW .

We introduce a functor N of supports, such that NV contains a�ne
subspaces of E and N (πWV ) is the projection of subspaces under πWV .
We suppose N to be closed under certain operations.
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Continuous variables

We then introduce a sheaf P of gaussian probability laws: ρ ∈PV if it is
supported on A ∈NV , and it is absolutely continuous and with Gaussian
density with respect to a given Lebesgue measure on A. The mean and
covariance of such ρ can be characterized without �xing coordinates or a
Lebesgue measure.

As before, we introduce a sheaf F of functionals of probability laws with
Shannon's action: for ϕ ∈FV ,

(W .ϕ)(ρ) :=
∫
πWV (A(ρ))

ϕ(ρ|XW=w )dπWV
∗ ρ(w), (14)
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Dimension is a cocycle

If A is the support of ρ ∈PV , then π
WV (A) is the support of the marginal

law πWV∗ ρ ∈PW , and (πWV )−1(w) is the support of ρ|XW=w . One has the
equality:

dim(A)= dim(πWV (A))+
∫
πWV (A)

dim((πWV )−1(w))dπWV
∗ ρ(w)

= dim(imπWV |A)+dim(kerπWV |A).
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Entropy is a cocycle

Di�erential entropy

S(ρ)=−
∫
A(ρ)

dρ

dλ
ln

dρ

dλ
dλ

is not invariant under change of Lebesgue measure.

We introduce a sheaf X a that encodes variations of the Lebesgue measure.
A section correspond to a collection of functions {φV }V∈ObS, such that φV

depends on a probability law ρ on EV and a reference measure λ on its
support (with ρ¿λ), and

∀C > 0, φV (ρ,Cλ)=φV (ρ,λ)+a lnC . (15)

The entropy S de�nes a section of X −1.
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Theorem (V., 2019)

For every a ∈R, the cohomology H1(S,X a) over a su�ciently rich

grassmannian information structure is the a�ne space of dimension one

made by the functions

ΦV (ρ)=−aS(ρ)+c .dim(A(ρ)), (16)

where c can be any real constant.

For gaussian probabilities, the fact that di�erential entropy is a 1-cocycle is
equivalent to Schur's determinantal formula

det

(
A B
C D

)
= det(A)det(D−BA−1C ); (17)
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Extensions and open problems

There is a quantum version of information cohomology, where Von
Neumann entropy appears as a 0-cochain, whose coboundary is related to
Shannon entropy. What is the role of other quantum entropies? Relations
with entanglement?

Functorial relation between classical and quantum information e.g. through
geometric quantization.

The same formalism gives other derived functors. For example, the derived
functors of the global sections functor ΓS(−). What is the link between
information cohomology and this cohomology of contextuality?

Information cohomology in higher degrees? Ext(M ,N)? Products in
cohomology?

q-deformed information theory for �ags?

Are there combinatorial models for other α-entropies?
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