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Shannon entropy

Shannon (1948) characterized the functions S; := 5(") :A" — R, given by

S1(Pos s Pn) Z pilnp;, (1)

as the only continuous functions (up to a multlpllcatlve constant), such
that S1(1/n,...,1/n) is monotonic in n and
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Shannon entropy

Shannon (1948) characterized the functions S; := 5(") :A" — R, given by

S1(Pos s Pn) Z pilnp;, (1)

as the only continuous functions (up to a multlpllcatlve constant), such
that S1(1/n,...,1/n) is monotonic in n and

“If a choice be broken down into two successive choices, the original S;
should be the weighted sum of the individual values of 5;."

P1

p S1(p1,p2,p3) =

P2

S1(p1+p2,p3)+(p1+p2)S1 ,
( )+ ) p1tp2 p1+p2

p2

P3
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Structural a-entropy (Tsallis a-entropy)

Havrda and Charvat introduced a generalized entropy, for each @ >0, a #1:

Sa(POw--,Pn): KO( (1_Xn:p,a) (2)

i=0

It satisfies a deformed version of the axioms.
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Structural a-entropy (Tsallis a-entropy)

Havrda and Charvat introduced a generalized entropy, for each @ >0, a #1:

Sa(PO»'--,Pn): KO( (1_Xn:p,a) (2)

i=0
It satisfies a deformed version of the axioms.

P1

p1 S1(p1,p2,p3) =
P1 P2

S1(p1+p2,p3)+(p1+p2)*S1 (—
P2 ( )+ ) p1tp2 p1+p2

P3

Why these axioms? What is their role in information theory?
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Multinomial coefficients

The multinomial coefficient

n o I[(n+1)
ki, ks| kilo--ks!  T(ky+1)---T(ks+1)

counts the number of words w € ", with X ={071,...,04}, such that o;
appears k; times.
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Multinomial coefficients

The multinomial coefficient

n o I[(n+1)
ki, ks| kilo--ks!  T(ky+1)---T(ks+1)

counts the number of words w € ", with X ={071,...,04}, such that o;
appears k; times.

From the point of view of probability and combinatorics, Shannon entropy
S1(p1,...,Ps) = —=X3_; pilnp; appears naturally in the asymptotic formula

(pln,.,i,psn) = exp(nS1(p1, -, ps) + O(Inn)) (3)
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g-multinomials

Let g be an indeterminate. Define

@ g-integers [n]g = %,

@ g-factorials: [n]g!:=[n]q[n—1]q--[1]q.
© g-multinomial coefficients by

_ [n]4!
o Tl Tl

n
ki, ..., ks

where ki, ..., ks are such that Y2 | ki =n.
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g-multinomials

Let g be an indeterminate. Define

Q g-integers [n]g = %,
@ g-factorials: [n]g!:=[n]q[n—1]q--[1]q.

© g-multinomial coefficients by

n
ki, ks

_ [n]4!
o Tdgb Tk

where ki, ..., ks are such that Y2 | ki =n.

Proposition

When q is a prime power, [k1 "

.....

B ]q counts the number of flags of vector

spaces Vi< Vac..c Vs=Fg such that dimV; = Zj’:zl ki.
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Tsallis 2-entropy in combinatorics

Proposition (V., 2018)

Let (p1,...,ps) be a probability. Then,

n

:qn252(p1 ..... ps)/2+o(n2). (5)
p1N, ..., Psn q

Here

52(P1r---»Ps) :=1_ipi2 (6)

i=1

is Tsallis 2-entropy (with the appropriate leading constant).
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Recurrence (Shannon entropy)

The combinatorial identity

n _ n (p1+p2)n
pin,p2n,p3n|  \(pL+p2)n,p3n|\ pin,pan
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Recurrence (Shannon entropy)

The combinatorial identity

n _ n (p1+p2)n
pin,p2n,p3n|  \(pL+p2)n,p3n|\ pin,pan

becomes asymptotically

exp(nS1(p1,p2, p3) +0(n)) =
pP1 P2
pL+p2’ p1L+p2

}+o(n)).

eXP(”{Sl(Pl +p2,p3) +(p1 + p2)S1 (
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Recurrence (a-entropy)

Since
n

pin,...,psn

=g 2P
q
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the multiplicative relation

n
p1n, p2n, p3n

n
(p1+p2)n,p3n

(p1+p2)n
pin,p2n

q q

June 14, 2019 11/45



Recurrence (a-entropy)

Since

pin,...,psn q

the multiplicative relation

n
pLn, p2n, p3n

n
(p1+p2)n,p3n

(p1+p2)n
pin,p2n

q q

implies

Sa(p1, P2, p3) = Sa(p1 + P2, p3) + (p1 + p2)° S2 (L L)-

pL+p2 pL+p2
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INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
> [} > —
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

“[T]he actual message is one selected from a set of possible messages. The
system must be designed to operate for each possible selection, not just the
one which will actually be chosen since this is unknown at the time of
design.” (Shannon)

The source is described by a probabilistic model that quantifies the
likelihood of any possible message.



A g-deformation of Shannon's theory

Concept Shannon case g-case
Message at time Word w e (0,1} Vector sullspace
n (n-message) vclg
Type Number of ones Dimension
Number of n n
n-messages of B K
type k q
Probability of a _
y . . Hqu(k 1)/2
n-message of E(1-¢) NE
type k ' )n

Where g is a prime power, and 0 >0, ¢ €[0,1] are arbitrary parameters.
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The g-binomial distribution

The binomial theorem implies that, for any ¢ € [0,1],
= [0k n—k
1=) |, [¢" (1=, (7
k=o\k
and also that Y ~ Bin(n,¢) appears as the sum Z; +--- Z,,, with Z; ~ Ber(¢).

In turn, Gauss' binomial formula says that

n -
Hqu(k 1)/2. (8)

(1+6)(1+60q)---(1+6q" Z
—6;

k=0
=:(~0:q)n 9

The g-binomial distribution has probability mass function
k— [Z]qw A variable Y ~ Bing(n,0) equals (in law) Xi +---+ X,

where X; ~ Ber(lwl ,11)
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Grassmannian process |

Fix a sequence of embeddings [F}, — [Ff, .

We introduce a stochastic process that generates at time n a generalized
message V), <Fg such that

© V,_1 can be recovered from V,, (as V,,m[Fg‘l);
@ the probability of V,, = v, when dimv =k, equals

ok gk(k-1)/2
(_6§ CI)n
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Grassmannian process |l: How?

For wc [Fg_l,

Dily(w) :={vcFgldimv—-dimw=1,

wcv and v¢[Fg_1}.

{Xi}ien are independent, X; ~ Ber(1+9 —

) Set V5 =0 and, at time n,

Q if X, =0, do nothing V,,=V,,_1;

@ if X, =1, increase dimension: pick V,, at random, uniformly, from
Dilp(Vp-1).
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Theorem (Generalized AEP)

For every § >0 and almost every € >0 (except a countable set), there exist
ng €N and sets A, = Ui(:%) Gr(n—k,n), for all n= ng, such that
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Theorem (Generalized AEP)

For every § >0 and almost every € >0 (except a countable set), there exist
ng €N and sets A, = Ui(:%) Gr(n—k,n), for all n= ng, such that

Q A(e) is an integer that just depends on &;
Q P(VheAf)<e
© for any ve A, such that dimv = k,

logq(P (V= V)™

—gSz(k/n) <5, (9)

Moreover, the size of A, is optimal, up to the first order in the exponential:
if s(n,€) is the cardinality of the smallest set of subspaces of Fg that
accumulate probability 1 —¢€, then

I|m IongA | = I|m L Iogq s(n €)= IirmgSz(A(s)/n) =A(e). (10)
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Definition
An information structure is a couple (S, M), where S (observables,
experiments, variables...) is a small category such that

© S has a terminal object, denoted 1;

@ S is a skeletal partially ordered set (poset);

© for objects X,Y,Z€0bS, if Z— X and Z— Y, then the categorical

product X A Y exists;

and M is a conservative covariant functor (the possible outputs) from S
into the category MeasurableSpace,,,;, X — M(X) = (E(X), B(X)), that
satisfies

Qo E(l) = {x};

© for every X € ObS and any x € E(X), the g-algebra B(X) contains the

singleton {x};
b/

O for every diagram X XAY —Z— Y the measurable map
E(XAY)—=E(X)xE(Y),z— (x(2),y(2)) :=(7«(2),04(2)) is an
injection.
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XAP —— P

N N
\//

XAV

PAV

(Expr,2EX®q3) )

zm)/ \\
\ /

(M, (Ex,2Ex) {*}
(EXxE\/,QEX@)Q]) (E\/,m)

where M — Ep x E\, and Ex := {3,963, 69 63}
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with E(X;) arbitrary, E(X; A Xj) = E(X;) x E(X;), and
E(Xl /\X2 /\X3) = E(Xl) X E(XQ) X E(Xz)
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Information topos

The category of covariant functors [S,Sets] as well as that of contravariant
functors [S°P,Sets] are important in applications. (For example,
probabilities define a covariant functor; the probabilitic functionals—like
entropy—, a contravariant one.)
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Information topos

The category of covariant functors [S,Sets] as well as that of contravariant
functors [S°P,Sets] are important in applications. (For example,
probabilities define a covariant functor; the probabilitic functionals—like
entropy—, a contravariant one.)

Both categories are Grothendieck topoi (related to geometric intuitions,
logical interpretations, general algebraic constructions...).

There is an appropriate notion of localization: marginalizations induced by
the surjections of M.

We want to study the geometrical invariants attached to these functors
(that are algebraic analogs of vector bundles).
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Information cohomology: Definition

For each X € ObS, the set # :={Y|X — Y} is a monoid under the
multiplication (Y,Z)— Y A Z ("joint variable’).

Each arrow X — Y induces an inclusion A — %x, which defines a
particular presheaf (contravariant functor). Let o/ denote the presheaf of
algebras X — R[#x] (finite linear combinations).
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Information cohomology: Definition

For each X € ObS, the set # :={Y|X — Y} is a monoid under the
multiplication (Y,Z)— Y A Z ("joint variable’).

Each arrow X — Y induces an inclusion A — %x, which defines a
particular presheaf (contravariant functor). Let o/ denote the presheaf of
algebras X — R[#x] (finite linear combinations).

The category Mod(«#) of «/-modules is an abelian category (i.e. it
behaves like the category of modules over a ring). We can introduce the
derived functors of Hom (R, —), denoted Ext*(R,-).

Definition
The information cohomology with coefficients in an «/-module M is

H*(S, M) := Ext* (R, M).
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Resolution

There is a bar resolution B, — R that allows us to compute H*(S, M) as
the homology of a differential complex (Nat(B., M),d).
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There is a bar resolution B, — R that allows us to compute H*(S, M) as
the homology of a differential complex (Nat(B., M),d).
We get cochains, cocycles and coboundaries.

Important to retain: n-cochains ¢ € Nat(Bp,, M) are characterized by
coherent/functorial collections of elements in M indexed by n-tuples of
elements in ObS (since each B,(X) is a free module); they are n-cocyles
when they satisfy d¢p =0; an n-coboundary is an n-cochain ¢ that comes
from an (n—1)-cochain v, such that ¢ =dy.

June 14, 2019 26 / 45



Resolution

There is a bar resolution B, — R that allows us to compute H*(S, M) as
the homology of a differential complex (Nat(B., M),d).
We get cochains, cocycles and coboundaries.

Important to retain: n-cochains ¢ € Nat(Bp,, M) are characterized by
coherent/functorial collections of elements in M indexed by n-tuples of
elements in ObS (since each B,(X) is a free module); they are n-cocyles
when they satisfy d¢p =0; an n-coboundary is an n-cochain ¢ that comes
from an (n—1)-cochain v, such that ¢ =dy.

We will see that the 1-cocycle condition encodes the recurrence properties
of entropies and multinomial coefficients.

June 14, 2019 26 / 45



@ Introduction

© Generalized information theory

© Information structures and their cohomology

@ Cohomology of discrete variables

June 14, 2019 27 / 45



Probabilistic case

Discrete variables: we suppose that each Ex is finite.
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P1 Let Q:S — Sets be a functor that
associates to each X a set Q(X) of

Pl probabilities on Ex (i.e. functions
p2 p: Ex —[0,1] such that ¥, cg, p(x) =1)
closed under conditioning by variables in S.
> Every arrow X — Y in S translates into a
3

surjection 7 : Ex — Ey that induces a
marginalization m, := Q(m) : Q(X) — Q(Y)
given by
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Probabilistic case

Discrete variables: we suppose that each Ex is finite.

P1 Let Q:S — Sets be a functor that
associates to each X a set Q(X) of

Pl probabilities on Ex (i.e. functions
p2 p: Ex —[0,1] such that ¥, cg, p(x) =1)
closed under conditioning by variables in S.
> Every arrow X — Y in S translates into a
3

surjection 7 : Ex — Ey that induces a
marginalization m, := Q(m) : Q(X) — Q(Y)
given by

xen1(y)

NB: Whenever S has no initial object, a section geI'(Q):= Hom[S,Sets](*’Q) is just a
coherent collection of probabilities that does not necessarily come from a global law,
called “pseudo-marginal” in the literature.
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Probabilistic functionals

Let F(X) be the additive abelian group of measurable real-valued functions
on Q(X), and F(m): F(Y)— F(X) (contravariant) such that
F(n)(p)=dom..

In the previous example: 7*f(p1, p2, p3) = f(p1 + P2, p3)-
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Probabilistic functionals

Let F(X) be the additive abelian group of measurable real-valued functions
on Q(X), and F(m): F(Y)— F(X) (contravariant) such that
F(n)(p)=dom..

In the previous example: 7*f(p1, p2, p3) = f(p1 + P2, p3)-

For each Y € #x and ¢ € F(X), define

(Yo)P)= X P(Y=y)"¢(Pxly=y). (11)
Px(y\sf})’/#o

This turns F into an «/-module that we denote F,.
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Probabilistic information cohomology: H*(S, F,)

The 1-cocycles are characterized collections of functionals
{o[X]: Q(X) = R} xop Such that

0=Xp[Y]=o[XY]+o[X] (12)

Proposition (Baudot-Bennequin, 2015; V. 2017)

The only 1-cocycles are given by multiples of

—Y xeex P(x)log P(x) when a=1

Sa[X] = .
. {erEx P(x)*-1 when a #1
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Probabilistic information cohomology: H*(S, F,)

The 1-cocycles are characterized collections of functionals
{o[X]: Q(X) = R} xop Such that

0=Xp[Y]=o[XY]+o[X] (12)

Proposition (Baudot-Bennequin, 2015; V. 2017)

The only 1-cocycles are given by multiples of

—Y xeex P(x)log P(x) when a=1

Sa[X] = .
. {erEx P(x)*-1 when a #1

Globally, the number of free constants depends on the number B¢ of
connected components of S\ {1},

HY(S,F) =RP;  HY(S,F,) =RPO™T when a #1.
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Information cohomology: Combinatorial case

Let C:S — Sets be a functor that associates to each X the set C(X) of
functions v: Ex — N such that [[v]| := ¥ eg, v(x) >0 (counting functions,
histograms...).
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Information cohomology: Combinatorial case

Let C:S — Sets be a functor that associates to each X the set C(X) of
functions v: Ex — N such that [[v]| := ¥ eg, v(x) >0 (counting functions,
histograms...).

Given m: X — Y, the arrow 7, := C(n): C(X) — C(Y) is given by
T[*V(y) = ern‘l(y) V(X)'

Let G(X) be the multiplicative abelian group of measurable (0,00)-valued
functions on C(X), and G(7): G(Y)— G(X) (contravariant) such that
G(m)(@) = por,.

For each Y € #x and ¢ € G(X), define

(Vo)) = T ¢(viv=y). (13)

yeEy
v(Y=y)#0

where v|y_,, is a restriction. This turns G into an «/-module.
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Computing H*(S, G)

Proposition (V. 2019)
© H°(S,G) has dimension 1 and is generated by the exponential
function.

@ The 1-cocycles are generalized (Fontené-Ward) multinomial
coefficients:
[Ivi]p!

" Myer, V)ID!

where [0]p! =1 and [n|p! = DpDp_1--- D1, for any sequence {D;}i>1
such that D1 =1.

¢LY1(v)
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Computing H*(S, G)

Proposition (V. 2019)
© H°(S,G) has dimension 1 and is generated by the exponential
function.

@ The 1-cocycles are generalized (Fontené-Ward) multinomial
coefficients:
[Ivi]p!

" Myer, V)ID!

where [0]p! =1 and [n|p! = DpDp_1--- D1, for any sequence {D;}i>1
such that D1 =1.

¢LY1(v)

The 0-cocycle condition reads: @(llvll) = @(vy)p(va)---@(vs).
The 1-cocycle confition reads: ¢p[XY]=(X.¢[Y])¢p[X] e.g.

n _ n k1 + ko
kl,k2,k3 - k1+k2,k3 kl,k2

- n— . . T
Dy, = n: usual multinomial coefficients; D, = %11: the g-multinomial coefficients.
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Asymptotic relation

Example:

@ 0-cocycles: the exponential exp(k|v|) is a combinatorial 0-cocycle,
the constant k is a probabilistic 0-cocycle.

@ l-cocycles:

( n ):exp(n51(p1,...,ps)+o(n))

pin, ..., Psn

and
n

Ing
e 2 5
pin pln S Pl + .
1n,...,PsN % ( 2 2( 1 ps) O(n ))

q
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Recurrence (Shannon entropy)

The combinatorial identity

n _ n (p1+p2)n
pin,p2n,p3n|  \(pL+p2)n,p3n|\ pin,pan
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Recurrence (a-entropy)

Since
n

pin,...,psn

q

the multiplicative relation

n
p1n, p2n, p3n

n
(p1+p2)n,p3n

(p1+p2)n
pin,p2n

q q
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Recurrence (a-entropy)

Since

pin,...,psn q

the multiplicative relation

n
pLn, p2n, p3n

n
(p1+p2)n,p3n

(p1+p2)n
pin,p2n

q q

implies
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Asymptotic relation |

Proposition (V. 2019)

Let ¢p be a combinatorial 1-cocycle. Suppose that, for every variable X,
there exists a measurable function w[X]: A(X) — R with the following
property: for every sequence of counting functions {vp}p=1 < Cx such that

Q vl — o0, and
Q for every x€ Ex, vp(x)/llvall = p(x) as n— oo

the asymptotic formula

P[X](vn) = exp(Ilval *y[X](p) + o(lIval®))

holds. Then v is a 1-cocycle of type a, i.e. feZ'(S,Fy).
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Continuous variables

Let E be a vector space, and S a category of subspaces of E, with arrows
corresponding to inclusions. We suppose it is conditionally closed under
intersections: if Z,V, W are objects of S such that Z<c V and Z < W, then
VnWeObS.

Let & be the functor V — Ey := E/V, sending V c W to the canonical
projection 7YV Ey — Eyy.

We introduce a functor A of supports, such that A4,/ contains affine
subspaces of E and A (7Y is the projection of subspaces under 7.

We suppose A to be closed under certain operations.
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Continuous variables

We then introduce a sheaf 2 of gaussian probability laws: pe 2y if it is
supported on Ae Ay, and it is absolutely continuous and with Gaussian
density with respect to a given Lebesgue measure on A. The mean and

covariance of such p can be characterized without fixing coordinates or a
Lebesgue measure.

As before, we introduce a sheaf & of functionals of probability laws with
Shannon’s action: for ¢ € Fy/,

wv

(Wp)0)= [y o 0(plxm)at p(w), (14

nW(A(p
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Dimension is a cocycle

If Ais the support of p € 2y, then 1WV(A) is the support of the marginal

law 1"V p e 2y, and (7WV)71(w) is the support of plx,,=,. One has the
equality:

dim(A) :dim(nWV(A))+f

HWV(A)

+dim(kerz"V | 4).

dim((x*"Y) ™ (w)) dm." p(w)

=dim(imz""V|4)
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Entropy is a cocycle

Differential entropy
do, dp

S(p)=- fA(p)d}LI L ar

is not invariant under change of Lebesgue measure.

We introduce a sheaf 22 that encodes variations of the Lebesgue measure.
A section correspond to a collection of functions {¢\/}veobs, such that ¢y
depends on a probability law p on E\ and a reference measure A on its
support (with p < 1), and

VC>0, ¢v(p,CA)=¢y(p,A)+alnC. (15)

The entropy S defines a section of 271,

June 14, 2019 42 /45



Theorem (V., 2019)

For every a€ R, the cohomology H'(S,%?) over a sufficiently rich
grassmannian information structure is the affine space of dimension one
made by the functions

Dy (p) =—aS(p)+c.dim(A(p)), (16)

where ¢ can be any real constant.

For gaussian probabilities, the fact that differential entropy is a 1-cocycle is
equivalent to Schur’s determinantal formula

det (’é g) = det(A)det(D - BA™ C); (17)
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Extensions and open problems

There is a quantum version of information cohomology, where Von
Neumann entropy appears as a 0-cochain, whose coboundary is related to
Shannon entropy. What is the role of other quantum entropies? Relations
with entanglement?

Functorial relation between classical and quantum information e.g. through
geometric quantization.

The same formalism gives other derived functors. For example, the derived
functors of the global sections functor I's(—). What is the link between
information cohomology and this cohomology of contextuality?
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There is a quantum version of information cohomology, where Von
Neumann entropy appears as a 0-cochain, whose coboundary is related to
Shannon entropy. What is the role of other quantum entropies? Relations
with entanglement?

Functorial relation between classical and quantum information e.g. through
geometric quantization.

The same formalism gives other derived functors. For example, the derived
functors of the global sections functor I's(—). What is the link between
information cohomology and this cohomology of contextuality?
Information cohomology in higher degrees? Ext(M,N)? Products in
cohomology?

g-deformed information theory for flags?

Are there combinatorial models for other a-entropies?
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