Ma140a Probability Conditional Probability and Expectation

Juan Pablo Vigneaux

Caltech

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

August 3, 2024

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability triple and $A \in \mathcal{F}$ such that $\mathbb{P}(A) > 0$. The expression

$$\mathbb{P}_A(B) := \mathbb{P}(B|A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

is the conditional probability of *B* given *A*. The map $B \mapsto \mathbb{P}_A(B)$ is a probability measure on \mathcal{F} .

The problem: If $Z : \Omega \to \mathbb{R}$ is a continuous probability measure, the events $\{Z = z\}$ have probability zero, hence $\mathbb{P}_{\{Z = z\}}(\cdot)$ is not well defined.

An example illustrating a change of perspective

Let A be a finite partition of Ω into sets $\{A_1, ..., A_n\}$ with positive probability (for instance, the events $\{X = x_i\}$ for a variable X taking finitely many different values.)

One can introduce $\mathbb{P}_{\mathcal{A}}(B)$, the conditional probability of $B \in \mathcal{F}$ after the "experiment" \mathcal{A} is performed, which is a random variable that maps $\omega \in \Omega$ to $\mathbb{P}_{A(\omega)}(B)$, where $A(\omega)$ is the set that contains ω .

Characterization of the conditional probability $\mathbb{P}_{\mathcal{A}}(B)$

The function $\mathbb{P}_{\mathcal{A}}(B): \Omega \to \mathbb{R}$ is uniquely characterized by the requirement of being $\sigma(\mathcal{A})$ -measurable and the condition:

$$\forall A \in \mathcal{A} \text{ (or, equivalently, in } \sigma(A)), \quad \mathbb{P}(A \cap B) = \int_{A} P_{\mathcal{A}}(B) \, \mathrm{d}\mathbb{P}.$$
(1)

This characterization also makes sense when we replace $\sigma(A)$ by any sub- σ -algebra of \mathcal{F} .

Conditional expectation

More generally, one can introduce conditional expectations (remark that $\mathbb{P}_{\mathcal{A}}(B) = \mathbb{E}(I_B|\mathcal{A})$).

Definition

Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{A} be a sub- σ -algebra of \mathbb{F} . A version of the conditional expectation is a function $Y \equiv \mathbb{E}(X|\mathcal{A})$ in $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ such that,

$$\forall A \in \mathcal{A}, \quad \int_{A} X \, \mathrm{d}\mathbb{P} = \int_{A} \mathbb{E}(X|\mathcal{A}) \, \mathrm{d}\mathbb{P}.$$
(2)

Example (illustrating the intuitions coming from "elementary" probability)

Suppose X and Z discrete (taking finitely many values), then $\sigma(Z)$ has atoms $\{Z = z\}$, $Y = \mathbb{E}(X|\sigma(Z))$ is constant on each atom, and for each $\omega \in \Omega$ such that $Z(\omega) = z$, one has $Y(\omega) = \mathbb{E}(X|Z = z) := \sum_{j=1}^{N} x_j \mathbb{P}(X = x_j|Z = z)$.

In the general case, there might be infinitely many versions of $\mathbb{E}(X|\mathcal{A})$, but any two version agree almost surely.

Notation: if *Z* random variable, we set $\mathbb{E}(X|Z) = \mathbb{E}(X|\sigma(Z))$. Because it is *Z* measurable, it is a measurable function of *Z*. However, in general, the function *f* cannot be determined explicitly and one has to limit oneself to use the properties of $\mathbb{E}(\cdot|\mathcal{G})$ listed below.

Example (Again, an "elementary" case where everything is very explicit)

Let $N \sim \text{Poisson}(\lambda)$ i.e. $p(k) = \lambda^k e^{-\lambda}/k!$ for $k \in \mathbb{N}$ where $\lambda > 0$. Let $K \sim \text{Bin}(N,p)$ i.e. $f_{K|N}(k|n) = \binom{n}{k}p^k(1-p)^{n-k}$. Then $\psi(n) = \mathbb{E}(K|N=n) = pn$ and $\mathbb{E}(K|N) = \psi(N) = pN$.

Conditional expectation as L²-projection

Suppose that $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Then $Y = \mathbb{E}(X|\mathcal{G})$ is a version of the orthogonal projection of $[X] \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ on $L^2(\Omega, \mathcal{A}, \mathbb{P})$ (which is a vector subspace of the former).

Remember that L^2 is an inner product space. The orthogonal projection \tilde{Y} satisfies the condition

$$\forall Z \in L^2(\Omega, \mathcal{A}, \mathbb{P}), \quad \langle X - \tilde{Y}, Z \rangle = 0.$$
(3)

In particular, if $Z = I_A$ for $A \in \mathcal{A}$, we get $\int_A X d\mathbb{P} = \int_A \tilde{Y} d\mathbb{P}$. But this seemingly weaker condition also implies (3) via the standard machine. So $Y = \mathbb{E}(X|\mathcal{A})$ is a version (representative) of the projection.

(The existence of an orthogonal projection is proved in Sec. 6.11 of Williams' book and depends on the sequential completeness of L^2 ; \tilde{Y} can be equivalently characterized by the equality $\left\| X - \tilde{Y} \right\|_2 = \inf_{W \in L^2(\mathcal{A})} \| X - W \|_2$.)

General construction of the conditional expectation for $X \in \mathcal{L}^1$

For general $X \in \mathcal{L}^1$. We suppose that X is positive. (For general X, decompose $X = X^+ - X^-$ first, then use linearity.)

Introduce $X_n = X \wedge n$, which are bounded variables such that $X_n \uparrow X$.

For each X_n , there exists $Y_n \in \mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ versions of $\mathbb{E}(X_n | \mathcal{A})$ introduced via projections.

Claim: $(Y_n)_n$ is a sequence of positive functions that is increasing.

Then $Y = \limsup Y_n$ is the desired function: it follows from (MON) that $\int_A Y d\mathbb{P} = \int_A X d\mathbb{P}$ for all $A \in \mathcal{A}$.

(Prove the claim by contradiction.)

We assume again that X is positive. Then $Q : \mathcal{A} \to [0, \infty), A \mapsto \int_A X d\mathbb{P}$ is a finite measure on \mathcal{A} , such that $Q(\Omega) = \mathbb{E}(X)$.

Moreover, it is clear that if $\mathbb{P}(A) = 0$ then Q(A) = 0; in other words, Q is absolutely continuous with respect to \mathbb{P} . Hence, by the Radon-Nikodym theorem, there exists a function $Y \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ such that for all $A \in \mathcal{A}$, $Q(A) = \int_A Y \, \mathrm{d}\mathbb{P}$.

The general case follows by linearity.

This was Kolmogorov's proof. However, following Williams, we'll take a different path here, and prove the Radon-nikodym theorem using conditional expectations and martingales.

Properties of the conditional expectation, see Williams 9.7

Let X be integrable and \mathcal{G} and \mathcal{H} denote sub- σ -algebras of \mathcal{F} .

- **1** If Y is any version of $\mathbb{E}(X|\mathcal{G})$, then $\mathbb{E}(Y) = \mathbb{E}(X)$.
- **2** If *X* is \mathcal{G} -measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s.
- **3** Linearity: $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ a.s.
- **4** Positivity: If $X \ge 0$, then $\mathbb{E}(X|\mathcal{G}) \ge 0$ a.s.
- **6** cMON: If $0 \le X_n \uparrow X$, then $\mathbb{E}(X_n | \mathcal{G}) \uparrow \mathbb{E}(X | \mathcal{G})$ a.s. Similarly there's a cFATOU and cDOM (**exercise**).
- 6 cJensen: If $c : \mathbb{R} \to \mathbb{R}$ is convex, and $\mathbb{E}|c(X)| < \infty$, then $\mathbb{E}(c(X)|\mathcal{G}) \ge c(\mathbb{E}(X|\mathcal{G}))$ a.s. Consequence: contractivity, $\|\mathbb{E}(X|\mathcal{G})\|_p \le \|X\|_p$ for $p \ge 1$.
- 7 If Z is G-measurable and bounded, E(ZX|G) = ZE(X|G) a.s. Also if X ∈ L^p, Z ∈ L^q and p, q conjugates i.e. p⁻¹ + q⁻¹ = 1. Also if X ∈ (mF)⁺, Z ∈ (mG)⁺, X integrable, and E(XZ) < ∞.</p>
- $\label{eq:constraint} \textbf{8} \mbox{ If \mathcal{H} independent of $\sigma(\sigma(X),\mathcal{G})$), then $\mathbb{E}(X|\sigma(\mathcal{G},\mathcal{H}))=\mathbb{E}(X|\mathcal{G})$ a.s. }$

Regular versions

Given a sequence $A = (A_n)_n \subset F$ of pairwise disjoint sets, one can use additivity and cMON to show that

$$\mathbb{E}\left(\sum_{n} I_{A_{n}} | \mathcal{G}\right) = \sum_{n} \mathbb{E}(I_{A_{n}} | \mathcal{G}) \quad \text{a.s.}$$
(4)

which holds outside a set N_A of \mathbb{P} -measure zero. Since there are uncountable many sequences A, it is not true in general that one can find a unique set N of measure zero such that the σ -additivity (4) holds on $\Omega \setminus N$ for any sequence A of pairwise disjoint sets.

Definition

A regular conditional probability on \mathcal{F} given \mathcal{G} is a map $P_{\mathcal{G}}: \Omega \times \mathcal{F} \rightarrow [0,1]$ such that

- 1 for all $F \in \mathcal{F}, \omega \mapsto P_{\mathcal{G}}(\omega, F)$ is a version of $\mathbb{P}(F|\mathcal{G})$,
- **2** for \mathbb{P} -almost every ω , the map $F \mapsto P_{\mathcal{G}}(\omega, F)$ is a probability measure on \mathcal{F} .