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Elementary definition

Let (Ω,F ,P) be a probability triple and A ∈ F such that P(A) > 0. The expression

PA(B) := P(B|A) := P(A ∩B)

P(A)

is the conditional probability of B given A. The map B 7→ PA(B) is a probability
measure on F .

The problem: If Z : Ω → R is a continuous probability measure, the events
{Z = z} have probability zero, hence P{Z=z}(·) is not well defined.



An example illustrating a change of perspective

Let A be a finite partition of Ω into sets {A1, ..., An} with positive probability (for instance,
the events {X = xi} for a variable X taking finitely many different values.)

One can introduce PA(B), the conditional probability of B ∈ F after the “experiment” A is
performed, which is a random variable that maps ω ∈ Ω to PA(ω)(B), where A(ω) is the set
that contains ω.

Characterization of the conditional probability PA(B)

The function PA(B) : Ω → R is uniquely characterized by the requirement of being
σ(A)-measurable and the condition:

∀A ∈ A (or, equivalently, in σ(A)), P(A ∩B) =

∫
A

PA(B) dP. (1)

This characterization also makes sense when we replace σ(A) by any sub-σ-algebra of F .



Conditional expectation

More generally, one can introduce conditional expectations (remark that
PA(B) = E(IB|A)).

Definition
Let X ∈ L1(Ω,F ,P) and A be a sub-σ-algebra of F. A version of the conditional
expectation is a function Y ≡ E(X|A) in L1(Ω,A,P) such that,

∀A ∈ A,
∫
A
X dP =

∫
A
E(X|A) dP. (2)

Example (illustrating the intuitions coming from “elementary” probability)

Suppose X and Z discrete (taking finitely many values), then σ(Z) has atoms
{Z = z}, Y = E(X|σ(Z)) is constant on each atom, and for each ω ∈ Ω such that
Z(ω) = z, one has Y (ω) = E(X|Z = z) :=

∑N
j=1 xjP(X = xj |Z = z).



Frame Title

In the general case, there might be infinitely many versions of E(X|A), but any two
version agree almost surely.

Notation: if Z random variable, we set E(X|Z) = E(X|σ(Z)). Because it is Z
measurable, it is a measurable function of Z. However, in general, the function f
cannot be determined explicitly and one has to limit oneself to use the properties
of E(·|G) listed below.

Example (Again, an “elementary” case where everything is very explicit)

Let N ∼ Poisson(λ) i.e. p(k) = λke−λ/k! for k ∈ N where λ > 0.
Let K ∼ Bin(N, p) i.e. fK|N (k|n) =

(
n
k

)
pk(1− p)n−k.

Then ψ(n) = E(K|N = n) = pn and E(K|N) = ψ(N) = pN .



Conditional expectation as L2-projection

Suppose that X ∈ L2(Ω,F ,P). Then Y = E(X|G) is a version of the
orthogonal projection of [X] ∈ L2(Ω,F ,P) on L2(Ω,A,P) (which is a vector
subspace of the former).

Remember that L2 is an inner product space. The orthogonal projection Ỹ
satisfies the condition

∀Z ∈ L2(Ω,A,P), ⟨X − Ỹ , Z⟩ = 0. (3)

In particular, if Z = IA for A ∈ A, we get
∫
AX dP =

∫
A Ỹ dP. But this seemingly

weaker condition also implies (3) via the standard machine. So Y = E(X|A) is a
version (representative) of the projection.

(The existence of an orthogonal projection is proved in Sec. 6.11 of Williams’ book
and depends on the sequential completeness of L2; Ỹ can be equivalently
characterized by the equality

∥∥∥X − Ỹ
∥∥∥
2
= infW∈L2(A) ∥X −W∥2.)



General construction of the conditional expectation for X ∈ L1

For general X ∈ L1. We suppose that X is positive. (For general X, decompose
X = X+ −X− first, then use linearity.)

Introduce Xn = X ∧ n, which are bounded variables such that Xn ↑ X.

For each Xn, there exists Yn ∈ L2(Ω,A,P) versions of E(Xn|A) introduced via
projections.

Claim: (Yn)n is a sequence of positive functions that is increasing.

Then Y = lim supYn is the desired function: it follows from (MON) that∫
A Y dP =

∫
AX dP for all A ∈ A.

(Prove the claim by contradiction.)



Another proof of the existence of E(X|A)

We assume again that X is positive. Then Q : A → [0,∞), A 7→
∫
AX dP is a finite

measure on A, such that Q(Ω) = E(X).

Moreover, it is clear that if P(A) = 0 then Q(A) = 0; in other words, Q is absolutely
continuous with respect to P. Hence, by the Radon-Nikodym theorem, there exists
a function Y ∈ L1(Ω,A,P) such that for all A ∈ A, Q(A) =

∫
A Y dP.

The general case follows by linearity.

This was Kolmogorov’s proof. However, following Williams, we’ll take a different
path here, and prove the Radon-nikodym theorem using conditional expectations
and martingales.



Properties of the conditional expectation, see Williams 9.7

Let X be integrable and G and H denote sub-σ-algebras of F .

1 If Y is any version of E(X|G), then E(Y ) = E(X).

2 If X is G-measurable, then E(X|G) = X a.s.
3 Linearity: E(aX + bY |G) = aE(X|G) + bE(Y |G) a.s.
4 Positivity: If X ≥ 0, then E(X|G) ≥ 0 a.s.
5 cMON: If 0 ≤ Xn ↑ X, then E(Xn|G) ↑ E(X|G) a.s.

Similarly there’s a cFATOU and cDOM (exercise).
6 cJensen: If c : R → R is convex, and E|c(X)| <∞, then

E(c(X)|G) ≥ c(E(X|G)) a.s.
Consequence: contractivity, ∥E(X|G)∥p ≤ ∥X∥p for p ≥ 1.

7 If Z is G-measurable and bounded, E(ZX|G) = ZE(X|G) a.s.
Also if X ∈ Lp, Z ∈ Lq and p, q conjugates i.e. p−1 + q−1 = 1.
Also if X ∈ (mF)+, Z ∈ (mG)+, X integrable, and E(XZ) <∞.

8 If H independent of σ(σ(X),G)), then E(X|σ(G,H)) = E(X|G) a.s.



Regular versions

Given a sequence A = (An)n ⊂ F of pairwise disjoint sets, one can use additivity
and cMON to show that

E

(∑
n

IAn |G

)
=
∑
n

E(IAn |G) a.s. (4)

which holds outside a set NA of P-measure zero. Since there are uncountable
many sequences A, it is not true in general that one can find a unique set N of
measure zero such that the σ-additivity (4) holds on Ω \N for any sequence A of
pairwise disjoint sets.

Definition
A regular conditional probability on F given G is a map PG : Ω×F → [0, 1]
such that

1 for all F ∈ F , ω 7→ PG(ω, F ) is a version of P(F |G),
2 for P-almost every ω, the map F 7→ PG(ω, F ) is a probability measure on F .


