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Let (Q2, F,P) be a probability triple and A € F such that P(A4) > 0. The expression

PA(B) = P(B|A) = P(E}(Z)B )

is the conditional probability of B given A. The map B — P 4(B) is a probability
measure on F.

The problem: If Z : Q — R is a continuous probability measure, the events
{Z = 2} have probability zero, hence P(,_.,(-) is not well defined.



An example illustrating a change of perspective

Let A be a finite partition of 2 into sets {A4, ..., A,,} with positive probability (for instance,
the events {X = «,} for a variable X taking finitely many different values.)

One can introduce P 4(B), the conditional probability of B € F after the “experiment” A is
performed, which is a random variable that maps w € Q to P4,,)(B), where A(w) is the set
that contains w.

Characterization of the conditional probability P 4(B)

The function P4(B) : 2 — R is uniquely characterized by the requirement of being
o(A)-measurable and the condition:

VA € A(or, equivalently, in 0(A)), P(ANB)= / P(B)dP. (1)
A

This characterization also makes sense when we replace o(.A) by any sub-c-algebra of F.



Conditional expectation
More generally, one can introduce conditional expectations (remark that
Pa(B) = E(I5|A)).
Definition

Let X € £!(Q, F,P) and A be a sub-o-algebra of IF. A version of the conditional
expectation is a function Y = E(X|A) in £1(Q, A, P) such that,

VA € A, /AXlez/AIE(X]A)dIP’. @)

Example (illustrating the intuitions coming from “elementary” probability)

Suppose X and Z discrete (taking finitely many values), then o(Z) has atoms
{Z =z},Y =E(X|o(Z)) is constant on each atom, and for each w € 2 such that
Z(w) = z,0ne has Y (w) = E(X|Z = 2) := Y1) 2;P(X = z4|Z = 2).



Frame Title

In the general case, there might be infinitely many versions of E(X |.A), but any two
version agree almost surely.

Notation: if Z random variable, we set E(X|Z) = E(X|o(Z)). Because itis Z
measurable, it is a measurable function of Z. However, in general, the function f
cannot be determined explicitly and one has to limit oneself to use the properties
of E(-|G) listed below.

Example (Again, an “elementary” case where everything is very explicit)

Let N ~ Poisson(\) i.e. p(k) = \e=*/k! for k € N where \ > 0.
Let K ~ Bin(N, p) i.e. frn(kln) = (})p*(1 —p)"~*.
Then ¢(n) = E(K|N =n) = pn and E(K|N) = ¢(N) = pN.



Suppose that X ¢ £2(Q, F,P). Then Y = E(X|G) is a version of the
orthogonal projection of [X] € L2(Q, F,P) on L%(Q, A, P) (which is a vector
subspace of the former).

Remember that L? is an inner product space. The orthogonal projection Y
satisfies the condition

VZ e L2(Q,AP), (X-Y,Z)=0. (3)

In particular, if Z =7, for Ac A, weget [, XdP= [, Y dP. But this seemingly
weaker condition also implies (3) via the standard machine. So Y = E(X|A) is a
version (representative) of the projection.

(The existence of an orthogonal projection is proved in Sec. 6.11 of Williams’ book
and depends on the sequential completeness of L?; Y can be equivalently

characterized by the equality HX — Y/HQ = infyerza [[X — W)



General construction of the conditional expectation for X < £!

For general X € £'. We suppose that X is positive. (For general X, decompose
X = Xt — X first, then use linearity.)

Introduce X,, = X A n, which are bounded variables such that X,, T X.

For each X, there exists Y,, € £2(f, A, P) versions of E(X,,|.A) introduced via
projections.

Claim: (Y},), is a sequence of positive functions that is increasing.

Then Y = limsupY,, is the desired function: it follows from (MON) that
[,YdP= [, X dPforall A c A.

(Prove the claim by contradiction.)



We assume again that X is positive. Then Q : A — [0,00), A — [, X dP s a finite
measure on A, such that Q(Q) = E(X).

Moreover, it is clear that if P(A) = 0 then Q(A) = 0; in other words, @ is absolutely
continuous with respect to P. Hence, by the Radon- Nikodym theorem, there exists
afunction Y € £1(Q, A,P) such thatforall A € A, Q(A) = [, Y dP.

The general case follows by linearity.

This was Kolmogorov’s proof. However, following Williams, we’ll take a different
path here, and prove the Radon-nikodym theorem using conditional expectations
and martingales.



Properties of the conditional expectation, see Williams 9.7

Let X be integrable and G and ‘H denote sub-c-algebras of F.

© If Y is any version of E(X|G), then E(Y') = E(X).

® If X is G-measurable, then E(X|G) = X a.s.

@ Linearity: E(aX +bY|G) = aE(X|G) + bE(Y|G) a.s.

@ Positivity: If X > 0, then E(X|G) > 0 a.s.

® cMON: If 0 < X, 1 X, then E(X,,|G) 1 E(X|G) a.s.
Similarly there’s a cFATOU and cDOM (exercise).

0 cJensen: If ¢ : R — R is convex, and E|c¢(X)| < oo, then
E(c(X)|G) > ¢(E(X|G)) as.

Consequence: contractivity, |[E(X|G)][, < [|X]|, for p > 1.

@ If Z is G-measurable and bounded, E(ZX|G) = ZE(X|G) a.s.
Alsoif X € £P, Z € £ and p, q conjugates i.e. p~' + ¢ ' = 1.
Also if X € (mF)*, Z € (mG)™", X integrable, and E(XZ7) < cc.

® If H independent of o(c(X),G)), then E(X|o(G,H)) = E(X|G) a.s.



Regular versions

Given a sequence A = (A,), C F of pairwise disjoint sets, one can use additivity
and cMON to show that

E (Z IA,JQ) = ZE(IAJQ) a.s. (4)

which holds outside a set N4 of P-measure zero. Since there are uncountable
many sequences A, it is not true in general that one can find a unique set N of
measure zero such that the o-additivity (4) holds on 2\ N for any sequence A of
pairwise disjoint sets.

Definition

A regular conditional probability on F given G isamap F; : Q2 x F — [0, 1]
such that

@ forall F € F,w — Pg(w, F) is a version of P(F|G),
® for P-almost every w, the map F' — Pg(w, F') is a probability measure on F.



