Ma140a Probability Conditional Probability and Expectation

Juan Pablo Vigneaux

Caltech

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

August 3, 2024

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability triple and $A \in \mathcal{F}$ such that $\mathbb{P}(A) > 0$. The expression

$$
\mathbb{P}_A(B) := \mathbb{P}(B|A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}
$$

is the conditional probability of B given A. The map $B \mapsto \mathbb{P}_A(B)$ is a probability measure on F.

The problem: If $Z : \Omega \to \mathbb{R}$ is a continuous probability measure, the events $\{Z=z\}$ have probability zero, hence $\mathbb{P}_{\{Z=z\}}(\cdot)$ is not well defined.

An example illustrating a change of perspective

Let A be a finite partition of Ω into sets $\{A_1, ..., A_n\}$ with positive probability (for instance, the events $\{X = x_i\}$ for a variable X taking finitely many different values.)

One can introduce $\mathbb{P}_4(B)$, the conditional probability of $B\in\mathcal{F}$ after the "experiment" A is performed, which is a random variable that maps $\omega \in \Omega$ to $\mathbb{P}_{A(\omega)}(B)$, where $A(\omega)$ is the set that contains ω.

Characterization of the conditional probability $\mathbb{P}_A(B)$

The function $\mathbb{P}_4(B)$: $\Omega \to \mathbb{R}$ is uniquely characterized by the requirement of being $\sigma(A)$ -measurable and the condition:

$$
\forall A \in \mathcal{A} \text{ (or, equivalently, in } \sigma(A)), \quad \mathbb{P}(A \cap B) = \int_A P_\mathcal{A}(B) \, d\mathbb{P}.
$$
 (1)

This characterization also makes sense when we replace $\sigma(\mathcal{A})$ by any sub- σ -algebra of \mathcal{F} .

Conditional expectation

More generally, one can introduce conditional expectations (remark that $\mathbb{P}_{A}(B) = \mathbb{E}(I_{B}|\mathcal{A})$.

Definition

Let $X \in \mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$ and A be a sub- σ -algebra of \mathbb{F} . A version of the conditional expectation is a function $Y\equiv \mathbb{E}(X|\mathcal{A})$ in $\mathcal{L}^1(\Omega,\mathcal{A},\mathbb{P})$ such that,

$$
\forall A \in \mathcal{A}, \quad \int_A X \, d\mathbb{P} = \int_A \mathbb{E}(X|\mathcal{A}) \, d\mathbb{P}.
$$
 (2)

Example (illustrating the intuitions coming from "elementary" probability)

Suppose X and Z discrete (taking finitely many values), then $\sigma(Z)$ has atoms ${Z = z}$, $Y = \mathbb{E}(X|\sigma(Z))$ is constant on each atom, and for each $\omega \in \Omega$ such that $Z(\omega)=z,$ one has $Y(\omega)=\mathbb{E}(X|Z=z):=\sum_{j=1}^N x_j\mathbb{P}(X=x_j|Z=z).$

In the general case, there might be infinitely many versions of $E(X|\mathcal{A})$, but any two version agree almost surely.

Notation: if Z random variable, we set $\mathbb{E}(X|Z) = \mathbb{E}(X|\sigma(Z))$. Because it is Z measurable, it is a measurable function of Z. *However, in general, the function* f *cannot be determined explicitly and one has to limit oneself to use the properties of* E(·|G) *listed below.*

Example (Again, an "elementary" case where everything is very explicit)

Let $N \sim \text{Poisson}(\lambda)$ i.e. $p(k) = \lambda^k e^{-\lambda} / k!$ for $k \in \mathbb{N}$ where $\lambda > 0$. Let $K \sim Bin(N, p)$ i.e. $f_{K|N}(k|n) = {n \choose k}$ $binom{n}{k} p^k (1-p)^{n-k}.$ Then $\psi(n) = \mathbb{E}(K|N=n) = pn$ and $\mathbb{E}(K|N) = \psi(N) = pN$.

Conditional expectation as L 2 **-projection**

 $\textbf{Suppose that } X \in \mathcal{L}^2(\Omega,\mathcal{F},\mathbb{P}). \text{ Then } Y = \mathbb{E}(X|\mathcal{G}) \text{ is a version of the } \textbf{E}(X|\mathcal{G}) \text{ is a version of } \textbf{E}(X|\mathcal{$ ${\sf orthogonal}$ projection of $[X] \in L^2(\Omega,\mathcal{F},\mathbb{P})$ on $L^2(\Omega,\mathcal{A},\mathbb{P})$ (which is a vector **subspace of the former).**

Remember that L^2 is an inner product space. The orthogonal projection \tilde{Y} satisfies the condition

$$
\forall Z \in L^{2}(\Omega, \mathcal{A}, \mathbb{P}), \quad \langle X - \tilde{Y}, Z \rangle = 0.
$$
 (3)

In particular, if $Z = I_A$ for $A \in \mathcal{A}$, we get $\int_A X \, d\mathbb{P} = \int_A \tilde{Y} \, d\mathbb{P}$. But this seemingly weaker condition also implies [\(3\)](#page-5-0) via the standard machine. So $Y = \mathbb{E}(X|\mathcal{A})$ is a version (representative) of the projection.

(The existence of an orthogonal projection is proved in Sec. 6.11 of Williams' book and depends on the sequential completeness of L^2 ; \tilde{Y} can be equivalently characterized by the equality $\Big\|$ $X - \tilde{Y}\Big\|_2 = \inf_{W \in L^2(\mathcal{A})} \|X - W\|_2.$

For general $X\in \mathcal{L}^1.$ We suppose that X is positive. (For general $X,$ decompose $X = X^+ - X^-$ first, then use linearity.)

Introduce $X_n = X \wedge n$, which are bounded variables such that $X_n \uparrow X$.

For each X_n , there exists $Y_n \in \mathcal{L}^2(\Omega,\mathcal{A},\mathbb{P})$ versions of $\mathbb{E}(X_n|\mathcal{A})$ introduced via projections.

Claim: $(Y_n)_n$ is a sequence of positive functions that is increasing.

Then $Y = \limsup Y_n$ is the desired function: it follows from (MON) that $\int_A Y \, d\mathbb{P} = \int_A X \, d\mathbb{P}$ for all $A \in \mathcal{A}$.

(Prove the claim by contradiction.)

We assume again that X is positive. Then $Q:\mathcal{A}\to [0,\infty)$, $A\mapsto \int_A X\,\mathrm{d}\mathbb{P}$ is a finite measure on A, such that $Q(\Omega) = \mathbb{E}(X)$.

Moreover, it is clear that if $P(A) = 0$ then $Q(A) = 0$; in other words, Q is absolutely continuous with respect to P. Hence, by the Radon-Nikodym theorem, there exists a function $Y \in \mathcal{L}^1(\Omega,\mathcal{A},\mathbb{P})$ such that for all $A \in \mathcal{A}$, $Q(A) = \int_A Y \, d\mathbb{P}$.

The general case follows by linearity.

This was Kolmogorov's proof. However, following Williams, we'll take a different path here, and prove the Radon-nikodym theorem using conditional expectations and martingales.

Properties of the conditional expectation, see Williams 9.7

Let X be integrable and G and H denote sub- σ -algebras of F.

- **1** If Y is any version of $\mathbb{E}(X|\mathcal{G})$, then $\mathbb{E}(Y) = \mathbb{E}(X)$.
- 2 If X is G-measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s.
- **3** Linearity: $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ a.s.
- 4 Positivity: If $X \geq 0$, then $\mathbb{E}(X|\mathcal{G}) > 0$ a.s.
- **6** cMON: If $0 \leq X_n \uparrow X$, then $\mathbb{E}(X_n|\mathcal{G}) \uparrow \mathbb{E}(X|\mathcal{G})$ a.s. Similarly there's a cFATOU and cDOM (**exercise**).
- 6 cJensen: If $c : \mathbb{R} \to \mathbb{R}$ is convex, and $\mathbb{E}|c(X)| < \infty$, then $\mathbb{E}(c(X)|\mathcal{G}) \geq c(\mathbb{E}(X|\mathcal{G}))$ a.s. Consequence: contractivity, $\left\| \mathbb{E}(X|\mathcal{G}) \right\|_p \leq \left\| X \right\|_p$ for $p \geq 1$.
- **7** If Z is G-measurable and bounded, $\mathbb{E}(ZX|G) = Z\mathbb{E}(X|G)$ a.s. Also if $X \in \mathcal{L}^p$, $Z \in \mathcal{L}^q$ and p,q conjugates i.e. $p^{-1} + q^{-1} = 1$. Also if $X \in (m\mathcal{F})^+$, $Z \in (m\mathcal{G})^+$, X integrable, and $\mathbb{E}(XZ) < \infty$.
- **8** If H independent of $\sigma(\sigma(X), \mathcal{G})$, then $\mathbb{E}(X|\sigma(\mathcal{G}, \mathcal{H})) = \mathbb{E}(X|\mathcal{G})$ a.s.

Regular versions

Given a sequence $A = (A_n)_n \subset F$ of pairwise disjoint sets, one can use additivity and cMON to show that

$$
\mathbb{E}\left(\sum_{n} I_{A_n}|\mathcal{G}\right) = \sum_{n} \mathbb{E}(I_{A_n}|\mathcal{G}) \quad \text{a.s.}
$$
 (4)

which holds outside a set N_A of P-measure zero. Since there are uncountable many sequences A , it is not true in general that one can find a unique set N of measure zero such that the σ -additivity [\(4\)](#page-9-0) holds on $\Omega \setminus N$ for any sequence A of pairwise disjoint sets.

Definition

A **regular conditional probability on** F given G is a map P_G : $\Omega \times F \rightarrow [0,1]$ such that

- **1** for all $F \in \mathcal{F}$, $\omega \mapsto P_G(\omega, F)$ is a version of $\mathbb{P}(F|\mathcal{G})$,
- 2 for P-almost every ω , the map $F \mapsto P_G(\omega, F)$ is a probability measure on F.