Ma140a Probability Markov Chains

Juan Pablo Vigneaux

Caltech

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

August 3, 2024

Theorem (Monotone Class Theorem, Williams 3.14)

Let \mathcal{H} be a class of bounded functions from a set S into \mathbb{R} satisfying the conditions:

- **1** \mathcal{H} is a vector space over \mathbb{R} ,
- **2** the constant function 1 is an element of \mathcal{H} ,
- **3** if (f_n) is a sequence of nonnegative bounded functions in \mathcal{H} such that $f_n \uparrow f$ where f is bounded, then $f \in \mathcal{H}$.

Then if \mathcal{H} contains the indicator function of every set in some π -system \mathcal{I} , then \mathcal{H} contains every bounded $\sigma(I)$ -measurable function on S.

An important application; cf. Ex. 6 in Workshop 6

Theorem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability triple; \mathcal{G} be a sub- σ -algebra of \mathcal{F} ; X and Y be RV taking values in (E_X, \mathcal{F}_X) and (E_Y, \mathcal{F}_Y) respectively. If X is \mathcal{G} -measurable and Y is independent of \mathcal{G} , then for every bounded function $\phi : E_X \times E_Y \to \mathbb{R}$,

$$\mathbb{E}(\phi(X,Y)|\mathcal{F}) = g(X),\tag{1}$$

where $g(x) = \mathbb{E}(\phi(x, Y))$.

Proof.

Let \mathcal{H} be the class of functions for which (1) holds; the class satisfies the properties (1)-(3) in the theorem (follows from the properties of conditional expectations, including the bounded convergence property). Let \mathcal{I} be the π -system of rectangles $A \times B$ with $A \in \mathcal{F}_X$ and $B \in \mathcal{F}_Y$; we'd like to show that $I_{A \times B} \in \mathcal{H}$, to conclude that \mathcal{H} contains all bounded real-valued measurable functions on $(E_X \times E_Y, \mathcal{F}_X \otimes \mathcal{F}_Y)$. So remark that if $\phi(x, y) = I_{A \times B}(x, y)$, then for any $G \in \mathcal{G}$,

 $\mathbb{E}(\phi(X,Y);G) = \mathbb{P}(\{X \in A\} \cap \{Y \in B\} \cap G) = \mathbb{P}(\{X \in A\} \cap G)\mathbb{P}(Y \in B)$ $= \mathbb{E}(I_A(X)\mathbb{P}(Y \in B);G) = \mathbb{E}(g(X);G).$

We have used $g(x) = \mathbb{E}(I_A(x)I_B(Y)) = I_A(x)\mathbb{P}(Y \in B)$.

Definitions

Definition

Let (S, S) be a measurable space. A function $P : S \times S \to \mathbb{R}$ is said to be a *transition kernel* if:

- **1** For each $x \in S$, $A \mapsto p(x, A)$ is a probability measure on (S, S).
- **2** For each $A \in S$, $x \mapsto p(x, A)$ is a measurable function.

Definition

Let $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$ be a filtered space. A process $X = (X_n)_{n \ge 0}$ is a (\mathcal{F}_n) -*Markov chain* (MC) with transition kernel p if

$$\forall n \ge 0, \forall B \in \mathcal{S}, \quad \mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B).$$
(2)

We refer to the law of X_0 as the initial distribution.

Example: Random walk

Let $(Z_n)_{n\geq 1}$ be an i.i.d. sequence of \mathbb{R}^d -valued random variables with law μ , and $\mathcal{F}_n = \sigma(Z_1, ..., Z_n)$. For some $z_0 \in \mathbb{R}^d$, define $X_0 = z_0$ a.s. and $X_n = z_0 + Z_1 + \cdots + Z_n$.

Then

$$\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = \mathbb{P}(X_n + Z_{n+1} \in B | \mathcal{F}_n) = \mathbb{E}(I_B(X_n + Z_{n+1}) | \mathcal{F}_n).$$

Because of Ex. 6 in Workshop 6: introduce

 $g(x) = \mathbb{E}(I_B(x + Z_{n+1})) = \int I_B(x + z) d\mu(z) = \mu(B - x)$, which is measurable by Fubini's theorem. Since X_n is \mathcal{F}_n -measurable and Z_{n+1} is independent of \mathcal{F}_n , the r.v. $g(X_n) = \mu(B - X_n)$ is a version of the conditional expectation $\mathbb{E}(I_B(X_n + Z_{n+1})|\mathcal{F}_n)$.

We conclude that X is a MC with transition kernel $p(x, B) = \mu(B - x)$.

(We have used the notation $B - x := \{ y - x : y \in B \}$.)

Example: Countable state space

Let S be countable, $\mathcal{S}=2^S,\,\mu$ a probability measure on S and $p:S\times S\to [0,1]$ such that

$$\forall s \in S, \quad \sum_{t \in S} p(s, t) = 1.$$

This extends to sets: $p(s, B) = \sum_{t \in B} p(s, t)$, defining for each s a probability distribution on 2^{S} .

We consider a collection of *S*-valued random variables $\{Z_s^{(n)} : n \ge 0, s \in S\}$ such that for each n and s, $Z_s^{(n)}$ has law $p(s, \cdot)$.

Let $X_0 \sim \mu$, $\mathcal{F}_n = \sigma(X_0, (Z_s^{(1)})_{s \in S}, ..., (Z_s^{(n)})_{s \in S})$ and define $X_{n+1} = Z_{X_n}^{(n+1)}$. The resulting process $X = (X_n)_{n \ge 0}$ is a MC with transition kernel p.

Proof: for any $B \in S$, $\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = \mathbb{E}(I_B(Z_{X_n}^{(n+1)}) | \mathcal{F}_n)$. As before, one introduces $g(x) = \mathbb{E}(I_B(Z_x^{(n+1)}) = p(x, B))$, and concludes by noting that $g(X_n)$ is a version of $\mathbb{E}(I_B(Z_{X_n}^{(n+1)}) | \mathcal{F}_n)$.

Theorem

Let (X_n) be a MC on S with transition kernel p and initial distribution μ . Then for any bounded measurable function $f: S \to \mathbb{R}$,

$$\mathbb{E}(f(X_{n+1})|\mathcal{F}_n) = \int f(y)p(X_n, \, \mathrm{d}y).$$
(3)

The result follows directly from the definition of MC using the monotone class theorem. (Let \mathcal{H} be the class of functions for which (3) holds...)

Theorem

Let $(X_n)_{n\geq 0}$ be a MC with transition kernel p. Let h be a bounded measurable function from $S^{\mathbb{N}}$ to \mathbb{R} . Then

$$\mathbb{E}(h(X_n, X_{n+1}, \dots) | \mathcal{F}_n) = \phi(X_n)$$
(4)

where $\phi(x) = \mathbb{E}_x(h)$, the expectation of h evaluated on a MC $(Y_n)_{n\geq 0}$ starting at $x \in S$ and with transitions p.