Ma140a Probability Lecture: Moments and Law of Large Numbers

Juan Pablo Vigneaux

Caltech

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

August 3, 2024

Table of Contents

2 Strong law of large numbers

Moments

Let (Ω, \mathcal{F}, P) be a probability triple and $X : \Omega \to \mathbb{R}$ a random variable. We denote by Λ_X the law of X; it is a measure on \mathbb{R} .

The p-th moment of X is

$$\mathbb{E}(X^p) := \int_{\Omega} X^p(\omega) \, \mathrm{d}P(\omega) = \int_{\mathbb{R}} x^p \, \mathrm{d}\Lambda_X(x).$$
(1)

When X^n is not integrable, one says that the moment does not exist. Similarly, the *centered p*-th moment is

$$\mathbb{E}((X - \mathbb{E}X)^p) = \int_{\mathbb{R}} (x - \mathbb{E}X)^p \,\mathrm{d}\Lambda_X(x).$$
⁽²⁾

 $\mathbb{E}X$ is called the *mean* of X (or average). $\mathbb{V}(X) := \mathbb{E}((X - \mathbb{E}X)^2)$ is the *variance* of X. Its square root $\sigma = \sqrt{\mathbb{V}(X)}$ is called *standard deviation*: it's a measure of "spread" of the distribution of X (in the same units as the mean).

\mathcal{L}^p spaces

For $1 \leq p < \infty$ we say that $X \in \mathcal{L}^p \equiv \mathcal{L}^p(\Omega, \mathcal{F}, P)$ if X is a r.v. such that $\mathbb{E}|X|^p < \infty$. remark that \mathcal{L}^p is a vector space.

We define $||X||_p = (\mathbb{E}|X|^p)^{1/p}$. It is a seminorm on \mathcal{L}^p , which means that

- it is homogeneous: for all $\lambda \in \mathbb{R}$ and $X \in \mathcal{L}^p$, $\|\lambda X\| = |\lambda| \|X\|$.
- It satisfies the triangular inequality (Minkowski's inequality): for all $X, Y \in \mathcal{L}^p$,

$$||X + Y||_p \le ||X||_p + ||Y||_p.$$

(The case p = 2 easily follows from the Cauchy-Schwarz inequality, see next slide.)

Remark that for any $p \ge 1$, $||Y||_p = 0$ iff Y = 0 almost everywhere. Let \mathcal{N}_p denote the subset of \mathcal{L}^p of functions that vanish almost everywhere. It is a vector space and the quotient $L^p = \mathcal{L}^p / \mathcal{N}_p$ is a normed vector space called *Lebesgue space*. One can prove that it's also complete (hence a Banach space).

Cauchy-Schwarz inequality

Theorem

If $X, Y \in \mathcal{L}^2$, then $XY \in \mathcal{L}^1$ and

 $\left|\mathbb{E}(XY)\right| \leq \|X\|_2 \, \|Y\|_2 \, .$

Proof.

Remark first $|\mathbb{E}XY| \leq \mathbb{E}|XY|$, hence we can restrict to $X \geq 0$ and $Y \geq 0$. To ensure convergence of integrals, truncate first: $X_n = X \wedge n = \min(X, n)$ and $Y_n = Y \wedge n$. For all $a, b \in \mathbb{R}$, one has

$$0 \leq \mathbb{E}(aX_n + bY_n)^2 = a^2 \mathbb{E}X_n^2 + 2ab\mathbb{E}X_nY_n + b^2\mathbb{E}Y_n^2.$$

The resulting quadratic in a/b or b/a is nonnegative, and the desired inequality follows form considering the necessary nonpositivity of its discriminant: $(2\mathbb{E}X_n\mathbb{E}Y_n)^2 \leq 4(\mathbb{E}X_n^2)(\mathbb{E}Y_n^2) \leq 4(\mathbb{E}X^2)(\mathbb{E}Y^2)$. Use the monotone convergence theorem to conclude.

Monotonicity of *L^p*-norms

Theorem (Williams, 6.7)

Suppose
$$1 \le p \le r < \infty$$
. If $Y \in \mathcal{L}^r$, then $Y \in \mathcal{L}^p$ and $\|Y\|_p \le \|Y\|_r$.

Proof.

For $n \in \mathbb{N}$, we truncate X: let $X_n(\omega) = (|Y|(\omega) \wedge n)^p$. Let $c(x) = x^{r/p}$. Because both X_n and $c(X_n)$ are in \mathcal{L}^1 (since X_n is bounded) and c is convex, Jensen's inequality implies that

$$(\mathbb{E}X_n)^{r/p} \le \mathbb{E}X_n^{r/p} = \mathbb{E}((|Y| \land n)^r) \le ||Y||_r^r.$$

Then use the monotone convergence theorem to conclude.

This truncation method is very important.

Independence means multiply

Theorem (cf. Williams 7.1; Tamuz 8.1)

Let $X, Y \in \mathcal{L}^1$ be independent. Then $X \cdot Y \in \mathcal{L}^1$ and

 $\mathbb{E}(X \cdot Y) = \mathbb{E}X \cdot \mathbb{E}Y.$

In particular, if X and Y are independent elements of \mathcal{L}^2 , then

 $\operatorname{Cov}(X,Y):=\mathbb{E}((X-\mathbb{E}X)(Y-\mathbb{E}Y))=0 \quad \textit{and} \quad \mathbb{V}(aX+bY)=a^2\,\mathbb{V}(X)+b^2\,\mathbb{V}(Y).$

Proof.

Apply the standard machine: assuming X and Y positive, approximate them with an increasing sequence of simple functions. For indicators, equality follows from the definition of independence.

Remark: for any measurable functions $f, g : \mathbb{R} \to \mathbb{R}$, g(X) and g(Y) are independent and $\mathbb{E}f(X)g(Y) = \mathbb{E}f(X)\mathbb{E}g(Y)$ will follow provided the integrability conditions hold.

Strong law in \mathcal{L}^4

Theorem (cf. Williams 7.2, Tamuz 8.3)

Suppose that $X_1, X_2, ...$ are independent random variables, all with mean μ , and that there is a $K \in [0, \infty)$ such that $\mathbb{E}X_i^4 \leq K$ for all $i \geq 1$. Let $S_n = X_1 + \cdots + X_n$. Then $P(n^{-1}S^n \to \mu) = 1$. In other words: $S_n/n \to \mu$ almost surely.

Proof.

Suppose first the variables are centered: $\mathbb{E}X = 0$. Expand

 $\mathbb{E}S_n^4 = \mathbb{E}(X_1 + \dots + X_n)^4$ and use the "independence means multiply" theorem to justify that most terms vanish, except those of the form X_i^4 and $X_i^2 X_j^2$ (one also needs monotonicity of norms to justify that finite fourth moment implies finite third and second moment).

Conclude that $\mathbb{E}S_n^4 \leq 3Kn^2$, hence that $\mathbb{E}(\sum_n (S_n/n)^4) < \infty$. It follows that $\sum_n (S_n/n)^4$ converges almost surely (a.s.) and therefore $S_n/n \to 0$ a.s.

More inequality

 (Ω, \mathcal{F}, P) probability space, X r.v. defined on it.

Markov's inequality

If X is positive, then $P(X \ge c) \le \frac{\mathbb{E}X}{c}$.

Proof: lower bound X by the simple function $cI_{\{X \ge c\}}$, then take expectations.

Chebyshev's inequality

 $P(|X - \mathbb{E}X| \ge t) \le \frac{\mathbb{V}(X)}{t^2}.$

Proof: Apply Markov's inequality to $|X - \mathbb{E}X|^2$.

Theorem (Weak law of large numbers, cf. Tamuz 9.1, also Williams 7.3)

Let $X_1, X_2, ...$ be a sequence of independent real random variables in \mathcal{L}^2 , such that $\mathbb{E}X_n = \mu$ and $\mathbb{V}X_n \leq \sigma^2$ for all n. Set $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then for every $\varepsilon > 0$ and $n \in \mathbb{N}^*$,

$$P(|Y_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon}$$

Proof.

Follows from Chebyshev's inequality, since $\mathbb{V}(Y_n) = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}(X_i) \le \sigma^2/n$.

By a truncation argument, the theorem also holds without supposing finiteness of the second moment, cf. Tamuz's Thm. 9.4.