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Moments

Let (Ω,F , P ) be a probability triple and X : Ω → R a random variable. We denote
by ΛX the law of X; it is a measure on R.

The p-th moment of X is

E(Xp) :=

∫
Ω
Xp(ω) dP (ω) =

∫
R
xp dΛX(x). (1)

When Xn is not integrable, one says that the moment does not exist.

Similarly, the centered p-th moment is

E((X − EX)p) =

∫
R
(x− EX)p dΛX(x). (2)

EX is called the mean of X (or average). V(X) := E((X − EX)2) is the variance
of X. Its square root σ =

√
V(X) is called standard deviation: it’s a measure of

“spread” of the distribution of X (in the same units as the mean).



Lp spaces

For 1 ≤ p < ∞ we say that X ∈ Lp ≡ Lp(Ω,F , P ) if X is a r.v. such that
E|X|p < ∞. remark that Lp is a vector space.

We define ∥X∥p = (E|X|p)1/p. It is a seminorm on Lp, which means that

• it is homogeneous: for all λ ∈ R and X ∈ Lp, ∥λX∥ = |λ| ∥X∥.
• It satisfies the triangular inequality (Minkowski’s inequality): for all X, Y ∈ Lp,

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p .

(The case p = 2 easily follows from the Cauchy-Schwarz inequality, see next
slide.)

Remark that for any p ≥ 1, ∥Y ∥p = 0 iff Y = 0 almost everywhere. Let Np denote
the subset of Lp of functions that vanish almost everywhere. It is a vector space
and the quotient Lp = Lp/Np is a normed vector space called Lebesgue space.
One can prove that it’s also complete (hence a Banach space).



Cauchy-Schwarz inequality

Theorem
If X,Y ∈ L2, then XY ∈ L1 and

|E(XY )| ≤ ∥X∥2 ∥Y ∥2 .

Proof.
Remark first |EXY | ≤ E|XY |, hence we can restrict to X ≥ 0 and Y ≥ 0. To ensure
convergence of integrals, truncate first: Xn = X ∧ n = min(X,n) and Yn = Y ∧ n.
For all a, b ∈ R, one has

0 ≤ E(aXn + bYn)
2 = a2EX2

n + 2abEXnYn + b2EY 2
n .

The resulting quadratic in a/b or b/a is nonnegative, and the desired inequality follows
form considering the necessary nonpositivity of its discriminant:
(2EXnEYn)

2 ≤ 4(EX2
n)(EY 2

n ) ≤ 4(EX2)(EY 2). Use the monotone convergence theorem
to conclude.



Monotonicity of Lp-norms

Theorem (Williams, 6.7)

Suppose 1 ≤ p ≤ r < ∞. If Y ∈ Lr, then Y ∈ Lp and ∥Y ∥p ≤ ∥Y ∥r.

Proof.
For n ∈ N, we truncate X: let Xn(ω) = (|Y |(ω) ∧ n)p. Let c(x) = xr/p. Because
both Xn and c(Xn) are in L1 (since Xn is bounded) and c is convex, Jensen’s
inequality implies that

(EXn)
r/p ≤ EXr/p

n = E((|Y | ∧ n)r) ≤ ∥Y ∥rr .

Then use the monotone convergence theorem to conclude.

This truncation method is very important.
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Independence means multiply

Theorem (cf. Williams 7.1; Tamuz 8.1)

Let X,Y ∈ L1 be independent. Then X · Y ∈ L1 and

E(X · Y ) = EX · EY.

In particular, if X and Y are independent elements of L2, then

Cov(X,Y ) := E((X−EX)(Y −EY )) = 0 and V(aX+bY ) = a2V(X)+b2V(Y ).

Proof.
Apply the standard machine: assuming X and Y positive, approximate them with an
increasing sequence of simple functions. For indicators, equality follows from the definition
of independence.

Remark: for any measurable functions f, g : R → R, g(X) and g(Y ) are independent and
Ef(X)g(Y ) = Ef(X)Eg(Y ) will follow provided the integrability conditions hold.



Strong law in L4

Theorem (cf. Williams 7.2, Tamuz 8.3)

Suppose that X1, X2, ... are independent random variables, all with mean µ, and
that there is a K ∈ [0,∞) such that EX4

i ≤ K for all i ≥ 1. Let Sn = X1 + · · ·+Xn.
Then P (n−1Sn → µ) = 1. In other words: Sn/n → µ almost surely.

Proof.
Suppose first the variables are centered: EX = 0. Expand
ES4

n = E(X1 + · · ·+Xn)
4 and use the “independence means multiply” theorem to

justify that most terms vanish, except those of the form X4
i and X2

i X
2
j (one also

needs monotonicity of norms to justify that finite fourth moment implies finite third
and second moment).
Conclude that ES4

n ≤ 3Kn2, hence that E(
∑

n(Sn/n)
4) < ∞. It follows that∑

n(Sn/n)
4 converges almost surely (a.s.) and therefore Sn/n → 0 a.s.
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More inequality

(Ω,F , P ) probability space, X r.v. defined on it.

Markov’s inequality

If X is positive, then P (X ≥ c) ≤ EX
c .

Proof: lower bound X by the simple function cI{X≥c}, then take expectations.

Chebyshev’s inequality

P (|X − EX| ≥ t) ≤ V(X)
t2

.

Proof: Apply Markov’s inequality to |X − EX|2.



Theorem (Weak law of large numbers, cf. Tamuz 9.1, also Williams 7.3)

Let X1, X2, ... be a sequence of independent real random variables in L2, such
that EXn = µ and VXn ≤ σ2 for all n. Set Yn = 1

n

∑n
i=1Xi. Then for every ε > 0

and n ∈ N∗,

P (|Yn − µ| > ε) ≤ σ2

nε
.

Proof.
Follows from Chebyshev’s inequality, since V(Yn) = 1

n2

∑n
i=1V(Xi) ≤ σ2/n.

By a truncation argument, the theorem also holds without supposing finiteness of
the second moment, cf. Tamuz’s Thm. 9.4.


