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Inverse image

Let f: X — Y be a function between set. We define the inverse image of a set
ACY as
fHA) :={ze X : flz) € A}.

Remark that this gives a function f~—1 : 2V — 2X,

Example

Let Q = {(-),(), (7,63, ), EZ}. Define X : Q — Z as X (w) = (# of points), and
Y = X mod 2. Then Y~1(0) = {{J, (I, E5}.



Measurability

Let (X, F) and (Y, G) be measurable spaces. A function f : X — Y is called
measurable (or F/G-measurable) if for all G € G, F~!(G) belongs to F.

Remark: In this case, thereisamap f~': G — F.

Example
Let Q= {H,T}N ={w:N = {H;T}} = { (wo,ws1,...) : w; € {H,T}}, and define
Xi(w) = ! !fWi:H-
0 Ifo.)i:T

What is the smallest o-algebra on 2 that makes all (X;);cny measurable?
It must contain every set of the form {X,; = 1}... in fact, itis o ({{X; = 1}, i € N}).



Let (X, F) be a measurable space. For a real-valued function f : X — R, itis
understood that R is equipped with its Borel o-algebra.

We denote by mF the set of real-valued measurable functions on (X, ). In turn,
bF denotes the subset of bounded real-valued measurable functions.

A function f : X — R on a topological space (X; 1) is called Borel if it is
o(7)/B(R)-measurable.



Functoriality

Iff(X,F)— (Y,G)and g : (Y,G) — (Z;H) are measurable maps, then
go f:(X;F)— (Z,H) is measurable too.



Functoriality

Iff(X,F)— (Y,G)and g : (Y,G) — (Z;H) are measurable maps, then
go f:(X;F)— (Z,H) is measurable too.

Proof.

We can compose g~ ! : H - Gand f~': G — F.

In other words, for any H € H, g~'(H) € G, so f~'(¢'(H)) € F,and
fH g™ (H)) = (go f)~'(H). O

There’s a category whose objects are measurable spaces and whose arrows are
measurable maps.



Theorem (Williams, Prop. 3.2)

Leth : X — Y be a function.
© 1! preserves all set operations: for every index set A (of arbitrary
cardinality), every collection (E,), € A, andany E C Y,
° h_l(UaeA Ea) = UaeA h_l(Ea)
© hHES) = (hH(B))°
° h_l(maeA Ea) = ﬂaGA hl(Ea)
® Suppose (X, F) and (Y, G) are measurable spaces. Consider C C G such that
o(C) =G. Ifforevery C € C, h~}(C) € F, then h is measurable.

Proof.

(1): Exercise.
For part (2), consider the collection £ of sets E such that »=}(E) € F. By (1) itis a

o-algebra and by (2) it contains C, hence it also contains G. O



Two applications

LetY =Rand G = B(R). ThenG =o({ (—o0,c] : ceR}soh: X - Ris
measurable if h=1((—oo, c]) € F forall ¢ € R.

Corollary

If X, Y are topological spaces and h : X — Y is continuous, then h is also
measurable.



Real-valued measurable functions form an algebra over R

Theorem (Williams, 3.2)

For any hi,he € mF and )\ € R, one has

hi+hy €mF, hy-hg€mF, and Mhy € mF



It is convenient to introduce the extended real line R = R U {—o0, +c}.

This is a totally ordered set, that we equip with the order topology, which is
generated by the rays (a, +oc] and [—o0, a). As a topological space, it is compact
and homeomorphic to [0, 1].

The rays (a, +oco] are neighborhoods of +oc, and similarly the rays [—oc, a) are
neighborhoods of —oc.

B(R) is the Borel o-algebra generated by this topology.

7(R) = {[~00,c] : c € R} is a w-system that generates B(R).



Measurability of limits

Theorem (Williams, 3.5)

Let (hn)nen be q sequence of elements of mF. Then inf hy,, sup hy, liminf h,, and
lim sup h,, are measurable functions (valued in R. Further,

{weQ : limh,(w) existsinR} € F.

For inf: {inf h,, > C} = Upen{hn > c}. O



Example
Let Q= {H,T}N ={w:N = {H;T}} = { (wo,ws,...) : w; € {H,T}}, and define
Xi(w) = {1 !fw =4 .
0 Ifwl-:T
F=o({{X;i=1},ieN}).

Then S, = X7 + - -- + X,, measurable for every n € N*.
We conclude that

A={weQ: Sy(w)/n—p}={liminf S,/n = p} N {limsup S,/n = p}

belongs to F i.e. it is measurable.
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Random variables

Let (Q2, F, P) be a probability space and (Ex, Fx) be a measurable set. In
probabilistic terminology, a measurable function X : (Q, F) — (Ex, Fx) is an
Ex-valued random variable.

When Ex = R, we simply say random variable.

Remark

For some authors (e.g. Omer Tamuz) a random variable is an equivalence class of
measurable functions, under f ~ g iff P(f # g) = 0. The problem is that, under
this definition, it does not make sense to talk about f > 0 or f continuous, etc.
One has to go back and forth between equivalence classes and representatives.

As suggested by the examples above, 2 does not have to be a numeric space.
The random variables turn the possible outcomes w € Q into numbers, that can be
combined using arithmetic operations, etc.



The algebra generated by X, denoted o(X), is the o-algebra generated by
X YFx):={X"YF) : F € Fx}. This is the smallest os-algebra that makes X
measurable. More generally:

Definition

Given a collection (Y, : 2 — (Eq, Fa), a € A) of maps on a set 2 into measurable
spaces (E,, Fa),

o(Yo:acA):=co(| )Y\

acA

is the smallest o-algebra that makes all Y,, measurable simultaneously.

o(Y, : a € A) contains all the events that can be defined in terms of Y,s, such that
{a <Y, <b,c <Y <d}, etc.



(Q, F, P) probability triple, X : Q@ — (Ex, Fx).

P

fX X F [07 1]

Ar—— {X €A} —— P(X €A

Remember that {X € A} ={weQ: X(w)e A}.

The law of X is the measure Ly = P o X! defined on (Ex, Fx). It is a probability
measure.

When Ex = R, we saw that Ly is uniquely determined by Fx : R — [0, 1] such
that Fx(x) = LX((—oo,x]) = P(X < x)

Fx is called the cumulative distribution function (cdf) of X.



Theorem (Williams 3.10)

Suppose F is the distribution function of some real-valued random variable. Then
©® F:R —[0,1] is nondecreasing.
® lim, , o F(z) =0andlim,_, . F(x) = 1.
©® F is right continuous.

Proof.

The first follows form the monotonicity of P under inclusions, the second from the
monotone-convergence properties of measures, and the third because

P(X <z+1/n)] P(X <uz).
L]

Given a function F' that satisfies this properties, one can construct an X whose cdf
is F' (Skorokhod representation, Williams 3.12).



Discrete variables

Suppose F is piece-wise constant, with discontinuities at A = {z1, z9, ...}
(exercise: there is at most a countable number of such discontinuities).

For x € A, set
p(z) = F(z) — lim F(z).

T—T

Then >~ ., p(z) = 1. This p is called a probability mass function.

Example

A ={0,1,2,...,n} and p(k) = (})p*(1 — p)* defines a binomial distribution of
parameter p € [0, 1].

Example

A=N=1{0,1,2,...} and p(k) = Ak;f defines a Poisson distribution of parameter
A > 0.



Continuous variables

Suppose that F(z) = [“__ f(t) dt for some integrable function f.
By monotonicity of F, f must be positive.

And since lim, o0 F(z) = 1, [72° f(z) = 1.

f is called a probability density function.

Example

i) = — 3y (—% (%)2> defines a normal distribution of mean ;. € R and

standard deviation o > 0.

de ™ x> 0,
f(z) = {o z < 0.

defines an exponential distribution of parameter A > 0.



