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Inverse image

Let f : X → Y be a function between set. We define the inverse image of a set
A ⊂ Y as

f−1(A) := {x ∈ X : f(x) ∈ A } .

Remark that this gives a function f−1 : 2Y → 2X .

Example

Let Ω = { , , , , , }. Define X : Ω → Z as X(ω) = (# of points), and
Y = X mod 2. Then Y −1(0) = { , , }.



Measurability

Let (X,F) and (Y,G) be measurable spaces. A function f : X → Y is called
measurable (or F/G-measurable) if for all G ∈ G, F−1(G) belongs to F .

Remark: In this case, there is a map f−1 : G → F .

Example

Let Ω = {H,T}N = {ω : N → {H;T}} = { (ω0, ω1, ...) : ωi ∈ {H,T} }, and define
Xi : Ω → R by

Xi(ω) =

{
1 if ωi = H

0 if ωi = T
.

What is the smallest σ-algebra on Ω that makes all (Xi)i∈N measurable?
It must contain every set of the form {Xi = 1}... in fact, it is σ({{Xi = 1}, i ∈ N}).



Measurability (continued)

Let (X,F) be a measurable space. For a real-valued function f : X → R, it is
understood that R is equipped with its Borel σ-algebra.

We denote by mF the set of real-valued measurable functions on (X,F). In turn,
bF denotes the subset of bounded real-valued measurable functions.

—

A function f : X → R on a topological space (X; τ) is called Borel if it is
σ(τ)/B(R)-measurable.



Functoriality

Theorem
If f(X,F) → (Y,G) and g : (Y,G) → (Z;H) are measurable maps, then
g ◦ f : (X;F) → (Z,H) is measurable too.

Proof.
We can compose g−1 : H → G and f−1 : G → F .
In other words, for any H ∈ H, g−1(H) ∈ G, so f−1(g−1(H)) ∈ F , and
f−1(g−1(H)) = (g ◦ f)−1(H).

There’s a category whose objects are measurable spaces and whose arrows are
measurable maps.
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Theorem (Williams, Prop. 3.2)

Let h : X → Y be a function.
1 h−1 preserves all set operations: for every index set A (of arbitrary

cardinality), every collection (Eα)α ∈ A, and any E ⊂ Y ,
• h−1(

⋃
a∈A Ea) =

⋃
a∈A h−1(Ea)

• h−1(Ec) = (h−1(E))c

• h−1(
⋂

a∈A Ea) =
⋂

a∈A h1(Ea)

2 Suppose (X,F) and (Y,G) are measurable spaces. Consider C ⊂ G such that
σ(C) = G. If for every C ∈ C, h−1(C) ∈ F , then h is measurable.

Proof.
(1): Exercise.
For part (2), consider the collection E of sets E such that h−1(E) ∈ F . By (1) it is a
σ-algebra and by (2) it contains C, hence it also contains G.



Two applications

Example

Let Y = R and G = B(R). Then G = σ({ (−∞, c] : c ∈ R } so h : X → R is
measurable if h−1((−∞, c]) ∈ F for all c ∈ R.

Corollary

If X,Y are topological spaces and h : X → Y is continuous, then h is also
measurable.



Real-valued measurable functions form an algebra over R

Theorem (Williams, 3.2)

For any h1, h2 ∈ mF and λ ∈ R, one has

h1 + h2 ∈ mF , h1 · ha ∈ mF , and λh1 ∈ mF



Extended real line

It is convenient to introduce the extended real line R̄ = R ∪ {−∞,+∞}.

This is a totally ordered set, that we equip with the order topology, which is
generated by the rays (a,+∞] and [−∞, a). As a topological space, it is compact
and homeomorphic to [0, 1].

The rays (a,+∞] are neighborhoods of +∞, and similarly the rays [−∞, a) are
neighborhoods of −∞.

B(R̄) is the Borel σ-algebra generated by this topology.

π(R̄) = { [−∞, c] : c ∈ R̄ } is a π-system that generates B(R̄).



Measurability of limits

Theorem (Williams, 3.5)

Let (hn)n∈N be q sequence of elements of mF . Then inf hn, suphn, lim inf hn and
lim suphn are measurable functions (valued in R̄. Further,

{ω ∈ Ω : limhn(ω) exists in R } ∈ F .

Proof.
For inf: {inf hn ≥ C} = ∪n∈N{hn ≥ c}.



Example

Let Ω = {H,T}N = {ω : N → {H;T}} = { (ω0, ω1, ...) : ωi ∈ {H,T} }, and define
Xi : Ω → R by

Xi(ω) =

{
1 if ωi = H

0 if ωi = T
.

F = σ({{Xi = 1}, i ∈ N}).

Then Sn = X1 + · · ·+Xn measurable for every n ∈ N∗.
We conclude that

Λ = {ω ∈ Ω : Sn(ω)/n → p } = {lim inf Sn/n = p} ∩ {lim supSn/n = p}

belongs to F i.e. it is measurable.
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Random variables

Let (Ω,F , P ) be a probability space and (EX ,FX) be a measurable set. In
probabilistic terminology, a measurable function X : (Ω,F) → (EX ,FX) is an
EX -valued random variable.

When EX = R, we simply say random variable.

Remark
For some authors (e.g. Omer Tamuz) a random variable is an equivalence class of
measurable functions, under f ∼ g iff P (f ̸= g) = 0. The problem is that, under
this definition, it does not make sense to talk about f ≥ 0 or f continuous, etc.
One has to go back and forth between equivalence classes and representatives.

As suggested by the examples above, Ω does not have to be a numeric space.
The random variables turn the possible outcomes ω ∈ Ω into numbers, that can be
combined using arithmetic operations, etc.



The algebra generated by X, denoted σ(X), is the σ-algebra generated by
X−1(FX) := {X−1(F ) : F ∈ FX }. This is the smallest σ-algebra that makes X
measurable. More generally:

Definition
Given a collection (Yα : Ω → (Eα,Fα), α ∈ A) of maps on a set Ω into measurable
spaces (Eα,Fα),

σ(Yα : α ∈ A) := σ(
⋃
a∈A

Y −1
α (Fα))

is the smallest σ-algebra that makes all Yα measurable simultaneously.

σ(Yα : α ∈ A) contains all the events that can be defined in terms of Yαs, such that
{a ≤ Yα ≤ b, c ≤ Yβ ≤ d}, etc.



Law and distribution function

(Ω,F , P ) probability triple, X : Ω → (EX ,FX).

FX F [0, 1]

A {X ∈ A} P (X ∈ A)

X−1 P

Remember that {X ∈ A} = {ω ∈ Ω : X(ω) ∈ A }.

The law of X is the measure LX = P ◦X−1 defined on (EX ,FX). It is a probability
measure.

When EX = R, we saw that LX is uniquely determined by FX : R → [0, 1] such
that FX(x) = LX((−∞, x]) = P (X ≤ x).

FX is called the cumulative distribution function (cdf) of X.



Theorem (Williams 3.10)

Suppose F is the distribution function of some real-valued random variable. Then
1 F : R → [0, 1] is nondecreasing.
2 limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.
3 F is right continuous.

Proof.
The first follows form the monotonicity of P under inclusions, the second from the
monotone-convergence properties of measures, and the third because

P (X ≤ x+ 1/n) ↓ P (X ≤ x).

Given a function F that satisfies this properties, one can construct an X whose cdf
is F (Skorokhod representation, Williams 3.12).



Discrete variables

Suppose FX is piece-wise constant, with discontinuities at Λ = {x1, x2, ...}
(exercise: there is at most a countable number of such discontinuities).

For x ∈ Λ, set
p(x) = F (x)− lim

x→x−
F (x).

Then
∑

x∈λ p(x) = 1. This p is called a probability mass function.

Example

Λ = {0, 1, 2, ..., n} and p(k) =
(
n
k

)
pk(1− p)k defines a binomial distribution of

parameter p ∈ [0, 1].

Example

Λ = N = {0, 1, 2, ...} and p(k) = λke−λ

k! defines a Poisson distribution of parameter
λ > 0.



Continuous variables

Suppose that F (x) =
∫ x
−∞ f(t) dt for some integrable function f .

By monotonicity of F , f must be positive.

And since limx→+∞ F (x) = 1,
∫ +∞
−∞ f(x) = 1.

f is called a probability density function.

Example

f(x) = 1
σ
√
2π

exp
(
−1

2

(x−µ
σ

)2) defines a normal distribution of mean µ ∈ R and
standard deviation σ > 0.

Example

f(x) =

{
λe−λx x ≥ 0,

0 x < 0.

defines an exponential distribution of parameter λ > 0.


