Ma140a Probability Lecture 5: Random variables

Juan Pablo Vigneaux

Caltech

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

August 3, 2024

Table of Contents

Let $f: X \to Y$ be a function between set. We define the **inverse image** of a set $A \subset Y$ as

$$
f^{-1}(A) := \{ x \in X : f(x) \in A \}.
$$

Remark that this gives a function $f^{-1}: 2^Y \to 2^X$.

Example

Let $\Omega = \{ \square, \square, \square, \square, \square, \square \}$. Define $X : \Omega \to \mathbb{Z}$ as $X(\omega) = (\# \text{ of points})$, and $Y = X \mod 2$. Then $Y^{-1}(0) = \{\Box, \Box, \boxdot, \Box\}$.

Measurability

Let (X, \mathcal{F}) and (Y, \mathcal{G}) be measurable spaces. A function $f : X \to Y$ is called **measurable** (or \mathcal{F}/\mathcal{G} -measurable) if for all $G \in \mathcal{G}$, $F^{-1}(G)$ belongs to $\mathcal{F}.$

Remark: In this case, there is a map $f^{-1}:\mathcal{G}\to\mathcal{F}.$

Example

Let $\Omega = \{H, T\}^{\mathbb{N}} = \{\omega : \mathbb{N} \to \{H; T\}\} = \{(\omega_0, \omega_1, ...) : \omega_i \in \{H, T\}\},$ and define $X_i:\Omega\to\overline{\mathbb{R}}$ by $X_i(\omega) = \begin{cases} 1 & \text{if } \omega_i = H \\ 0 & \text{if } \omega_i \end{cases}$ 0 if $\omega_i = T$.

What is the smallest σ -algebra on Ω that makes all $(X_i)_{i\in\mathbb{N}}$ measurable? It must contain every set of the form $\{X_i = 1\}$... in fact, it is $\sigma(\{\{X_i = 1\}, i \in \mathbb{N}\})$.

—

Let (X, \mathcal{F}) be a measurable space. For a real-valued function $f: X \to \mathbb{R}$, it is understood that $\mathbb R$ is equipped with its Borel σ -algebra.

We denote by $m\mathcal{F}$ the set of real-valued measurable functions on (X,\mathcal{F}) . In turn, $b\mathcal{F}$ denotes the subset of bounded real-valued measurable functions.

A function $f: X \to \mathbb{R}$ on a topological space $(X; \tau)$ is called Borel if it is $\sigma(\tau)/\mathcal{B}(\mathbb{R})$ -measurable.

Functoriality

Theorem

If $f(X, \mathcal{F}) \rightarrow (Y, \mathcal{G})$ *and* $g : (Y, \mathcal{G}) \rightarrow (Z, \mathcal{H})$ *are measurable maps, then* $g \circ f : (X; \mathcal{F}) \to (Z, \mathcal{H})$ *is measurable too.*

Functoriality

Theorem

If $f(X, \mathcal{F}) \rightarrow (Y, \mathcal{G})$ *and* $g : (Y, \mathcal{G}) \rightarrow (Z, \mathcal{H})$ *are measurable maps, then* $g \circ f : (X; \mathcal{F}) \to (Z, \mathcal{H})$ *is measurable too.*

Proof.

We can compose $g^{-1}:\mathcal{H}\to\mathcal{G}$ and $f^{-1}:\mathcal{G}\to\mathcal{F}.$ In other words, for any $H\in\mathcal{H},$ $g^{-1}(H)\in\mathcal{G},$ so $f^{-1}(g^{-1}(H))\in\mathcal{F},$ and $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H).$

There's a category whose objects are measurable spaces and whose arrows are measurable maps.

Theorem (Williams, Prop. 3.2)

Let $h \cdot X \rightarrow Y$ *be a function*.

1 h [−]¹ *preserves all set operations: for every index set* A *(of arbitrary cardinality), every collection* $(E_{\alpha})_{\alpha} \in A$ *, and any* $E \subset Y$ *,*

•
$$
h^{-1}(\bigcup_{a \in A} E_a) = \bigcup_{a \in A} h^{-1}(E_a)
$$

• $h^{-1}(E^c) = (h^{-1}(E))^c$

$$
\bullet \quad h^{-1}(\bigcap_{a\in A} E_a) = \bigcap_{a\in A} h^1(E_a)
$$

2 *Suppose* (X, F) *and* (Y, G) *are measurable spaces. Consider* C ⊂ G *such that* $\sigma(\mathcal{C})=\mathcal{G}.$ If for every $C\in \mathcal{C},$ $h^{-1}(C)\in \mathcal{F},$ then h is measurable.

Proof.

(1): Exercise.

For part (2), consider the collection $\mathcal E$ of sets E such that $h^{-1}(E) \in \mathcal F$. By (1) it is a σ -algebra and by (2) it contains C, hence it also contains G.

Example

Let $Y = \mathbb{R}$ and $\mathcal{G} = \mathcal{B}(\mathbb{R})$. Then $\mathcal{G} = \sigma(\{(-\infty, c] : c \in \mathbb{R}\}\)$ so $h: X \to \mathbb{R}$ is measurable if $h^{-1}((-\infty, c]) \in \mathcal{F}$ for all $c \in \mathbb{R}$.

Corollary

If X, Y *are topological spaces and* h : X → Y *is continuous, then* h *is also measurable.*

Real-valued measurable functions form an algebra over R

Theorem (Williams, 3.2)

For any $h_1, h_2 \in m \mathcal{F}$ *and* $\lambda \in \mathbb{R}$ *, one has*

 $h_1 + h_2 \in m\mathcal{F}$, $h_1 \cdot h_a \in m\mathcal{F}$, and $\lambda h_1 \in m\mathcal{F}$

It is convenient to introduce the extended real line $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$

This is a totally ordered set, that we equip with the order topology, which is generated by the rays $(a, +\infty]$ and $[-\infty, a)$. As a topological space, it is compact and homeomorphic to [0, 1].

The rays $(a, +\infty]$ are neighborhoods of $+\infty$, and similarly the rays $[-\infty, a)$ are neighborhoods of $-\infty$.

 $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra generated by this topology.

 $\pi(\bar{\mathbb{R}}) = \{ [-\infty, c] : c \in \bar{\mathbb{R}} \}$ is a π -system that generates $\mathcal{B}(\bar{\mathbb{R}})$.

Theorem (Williams, 3.5)

Let $(h_n)_{n\in\mathbb{N}}$ be q sequence of elements of $m\mathcal{F}$. Then $\inf h_n$, $\sup h_n$, $\liminf h_n$ and $\limsup h_n$ *are measurable functions (valued in* \mathbb{R} *. Further,*

 $\{\omega \in \Omega : \lim h_n(\omega)$ *exists in* $\mathbb{R} \} \in \mathcal{F}$.

Proof.

For inf: $\{\inf h_n \geq C\} = \bigcup_{n \in \mathbb{N}} \{h_n \geq c\}.$

Example

Let $\Omega = \{H, T\}^{\mathbb{N}} = \{\omega : \mathbb{N} \to \{H; T\}\} = \{(\omega_0, \omega_1, ...) : \omega_i \in \{H, T\}\},$ and define $X_i : \Omega \to \mathbb{R}$ by

$$
X_i(\omega) = \begin{cases} 1 & \text{if } \omega_i = H \\ 0 & \text{if } \omega_i = T \end{cases}.
$$

$$
\mathcal{F} = \sigma(\{\{X_i = 1\}, i \in \mathbb{N}\}).
$$

Then $S_n = X_1 + \cdots + X_n$ measurable for every $n \in \mathbb{N}^*$. We conclude that

 $\Lambda = \{ \omega \in \Omega : S_n(\omega)/n \to p \} = \{ \liminf S_n/n = p \} \cap \{ \limsup S_n/n = p \}$

belongs to F i.e. it is measurable.

Table of Contents

Random variables

Let (Ω, \mathcal{F}, P) be a probability space and (E_X, \mathcal{F}_X) be a measurable set. In probabilistic terminology, a measurable function $X : (\Omega, \mathcal{F}) \to (E_X, \mathcal{F}_X)$ is an EX**-valued random variable.**

When $E_X = \mathbb{R}$, we simply say *random variable*.

Remark

For some authors (e.g. Omer Tamuz) a random variable is an equivalence class of measurable functions, under $f \sim q$ iff $P(f \neq q) = 0$. The problem is that, under this definition, it does not make sense to talk about $f \geq 0$ or f continuous, etc. One has to go back and forth between equivalence classes and representatives.

As suggested by the examples above, Ω does not have to be a numeric space. The random variables turn the possible outcomes $\omega \in \Omega$ into numbers, that can be combined using arithmetic operations, etc.

The algebra generated by X, denoted $\sigma(X)$, is the σ -algebra generated by $X^{-1}(\mathcal{F}_X):=\set{X^{-1}(F)\,:\, F\in \mathcal{F}_X}$. This is the smallest σ -algebra that makes X measurable. More generally:

Definition

Given a collection $(Y_\alpha : \Omega \to (E_\alpha, \mathcal{F}_\alpha)$, $\alpha \in A)$ of maps on a set Ω into measurable spaces $(E_{\alpha}, \mathcal{F}_{\alpha})$, $\sigma(Y_{\alpha}: \alpha \in A) := \sigma(\bigcup Y_{\alpha}^{-1}(\mathcal{F}_{\alpha}))$

a∈A

is the smallest σ -algebra that makes all Y_{α} measurable simultaneously.

 $\sigma(Y_\alpha : \alpha \in A)$ contains all the events that can be defined in terms of Y_α s, such that ${a \le Y_\alpha \le b, c \le Y_\beta \le d}$, etc.

Law and distribution function

 (Ω, \mathcal{F}, P) probability triple, $X : \Omega \to (E_X, \mathcal{F}_X)$.

$$
\mathcal{F}_X \xrightarrow{\quad \ \ X^{-1} \quad \ } \mathcal{F} \xrightarrow{\quad \ \ P \quad \ } [0,1]
$$

$$
A \longmapsto \{X \in A\} \longmapsto P(X \in A)
$$

Remember that $\{X \in A\} = \{\omega \in \Omega : X(\omega) \in A\}.$

The law of X is the measure $L_X = P \circ X^{-1}$ defined on (E_X, \mathcal{F}_X) . It is a probability measure.

When $E_X = \mathbb{R}$, we saw that L_X is uniquely determined by $F_X : \mathbb{R} \to [0, 1]$ such that $F_X(x) = L_X((-\infty, x]) = P(X \le x)$.

 F_X is called the **cumulative distribution function** (cdf) of X.

Theorem (Williams 3.10)

Suppose F *is the distribution function of some real-valued random variable. Then*

 \bigodot $F : \mathbb{R} \to [0,1]$ *is nondecreasing.*

$$
\text{dim}_{x\to-\infty} F(x) = 0 \text{ and } \lim_{x\to+\infty} F(x) = 1.
$$

3 F *is right continuous.*

Proof.

The first follows form the monotonicity of P under inclusions, the second from the monotone-convergence properties of measures, and the third because

$$
P(X \le x + 1/n) \downarrow P(X \le x).
$$

Given a function F that satisfies this properties, one can construct an X whose cdf is F (Skorokhod representation, Williams 3.12).

Discrete variables

Suppose F_X is piece-wise constant, with discontinuities at $\Lambda = \{x_1, x_2, ...\}$ (exercise: there is at most a countable number of such discontinuities). For $x \in \Lambda$, set

$$
p(x) = F(x) - \lim_{x \to x^{-}} F(x).
$$

Then $\sum_{x \in \lambda} p(x) = 1.$ This p is called a **probability mass function**.

Example

 $\Lambda = \{0, 1, 2, ..., n\}$ and $p(k) = {n \choose k}$ $\binom{n}{k}p^k(1-p)^k$ defines a **binomial** distribution of parameter $p \in [0, 1]$.

Example

 $\Lambda=\mathbb{N}=\{0,1,2,...\}$ and $p(k)=\frac{\lambda^k e^{-\lambda}}{k!}$ $\frac{e}{k!}$ defines a **Poisson** distribution of parameter $\lambda > 0$.

Continuous variables

Suppose that $F(x) = \int_{-\infty}^{x} f(t) dt$ for some integrable function f. By monotonicity of F , f must be positive.

And since $\lim_{x\to+\infty}F(x)=1$, $\int_{-\infty}^{+\infty}f(x)=1$.

 f is called a probability density function.

Example

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\right)$ $rac{1}{2}$ $\left(\frac{x-\mu}{\sigma}\right)$ $\left(\frac{-\mu}{\sigma}\right)^2\Big)$ defines a **normal** distribution of mean $\mu\in\mathbb{R}$ and standard deviation $\sigma > 0$.

Example

$$
f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}
$$

defines an **exponential** distribution of parameter $\lambda > 0$.