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Theorem (De Moivre-Laplace)

Let (Xi)i≥1 be a sequence of iid random variables, each with distribution Ber(p),
defined on a probability space (Ω,F ,P). Set Sn = X1 + · · ·+Xn and q = 1− p.
Then for any constants a and b such that −∞ < a < b < +∞, we have

lim
n→∞

P
(
a <

Sn − np
√
npq

≤ b

)
=

1

2π

∫ b

a
e−x2/2 dx. (1)

There is a very interesting discussion about the intuition behind this theorem here
(whuber’s answer): https://stats.stackexchange.com/questions/3734/
what-intuitive-explanation-is-there-for-the-central-limit-theorem

https://stats.stackexchange.com/questions/3734/what-intuitive-explanation-is-there-for-the-central-limit-theorem
https://stats.stackexchange.com/questions/3734/what-intuitive-explanation-is-there-for-the-central-limit-theorem


Proof.
Denoting xk = (k − np)/

√
npq, we rewrite the probability on the LHS of (1) as∑

a<xk≤b

(
n
k

)
pkqn−k.

Then use that within that sum k ∼ np and n− k ∼ nq.1 Together with Stirling’s
approximation (which should also be credited to De Moivre!) and a Taylor
expansion of the logarithm of (npk )k( nq

n−k )
n−k, one proves that for |xk| bounded,(

n
k

)
pkqn−k ∼ 1√

2πnpq
e−x2

k/2.
By observing that xk+1 − xk = 1/

√
npq, the sum∑

a<xk≤b

(
n
k

)
pkqn−k = 1√

2π

∑
a<xk≤b e

−x2
k/2(xk+1 − xk) can be seen as a Riemann

sum approximating (2π)−1/2
∫ b
a e−x2/2 dx.

For details, see Chung and AitSahlia, Elementary Probability Theory, Springer,
2003.

1fn ∼ gn means that limn fn/gn = 1.
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Generalization

Can we expect the same limiting behavior for an arbitrary sequence of random
variables?

• We need some conditions. For instance, if (Xi)i is a sequence of iid variables
following a Cauchy distribution, with p.d.f. 1

π(1+x2)
, then the means n−1

∑n
i=1

are also Cauchy distributed. (You see that for these variables not even the
LLN holds.)

• However, we shall prove that the theorem at least holds for any sequence
(Xi)i of iid variables with finite nonzero variance σ2. (The Cauchy distribution
has infinite variance.)

• The
√
n denominator gives the good scaling to get a limiting “shape” that’s

independent of n. This is because

V
(∑n

i=1Xi√
n

)
= V(X1) = σ2.



And what should be the limit?

Suppose for simplicity that (Xi)i is a sequence of iid random variables with mean
µ = 0 and variance σ2 = 1.

Suppose lim X1+···+X2n√
2n

∼ Z (i.e. that in the limit the distribution is that of a random
variable Z). Then it’s also the case that

lim
n

X1 + · · ·+Xn√
n

+
Xn+1 + · · ·+X2n√

n
∼ Z1 + Z2.

Here (Z,Z1, Z2) are iid, and must have variance 1. It follows that
√
2Z = Z1 + Z2.

If Z ∼ N (0, 1) this equation is satisfied. It turns out that’s the only solution.



Weak convergence to a normal

Definition
We say that a sequence (µn)n ⊂ Prob(R), the probability distributions on R,
converges weakly to µ ∈ Prob(R) if for all h ∈ Cb(R) (bounded function) one has
µn(h) → µ(h) as n → ∞. This is denoted µn

w→ µ.

We say that Xn converges to X in distribution, denoted Xn
D→ X if ΛXn

w→ ΛX

Theorem (CLT)

Let X1, X2, ... be a sequence of iid random variables with finite mean µ and finite
nonzero variance σ2, and Z a normal random variable with mean 0 and variance 1.
Set Sn = X1 + · · ·+Xn. Then,

Sn − nµ√
nσ2

D→ Z (2)



Characteristic functions

There are several ways of proving the CLT, and all of them are involved in their
own way.

We’re going to follow the most “classic” path, via characteristic functions. The
characteristic function of a real-valued random variable X is the complex-valued
function ϕX(t) = E(eitX) i.e. it’s Fourier transform (although this was already
considered by Laplace).

Theorem
If X and Y are independent, then ϕX+Y (t) = ϕX(t)ϕY (t).



Laplace’s idea for a proof

Supposing that X that X is discrete and bounded, one would write
ϕX(t) =

∑m
k=−m pke

ikt, so that ϕX1+···+Xn(t) = (ϕX(t))n. By using the fact that
1
2π

∫ π
−π e

−itxeisx dx = δts, it follows that P (j) = 1
2π

∫ π
−π e

−ijx(
∑m

k=−m pke
ikt)n dx.

Here P (j) is the probability that X1 + · · ·+Xn equals j. This is an expression of
what we would call today an inversion formula.

Then the idea is to expand (
∑m

k=−m pke
ikt)n as a power series in k, and somehow

justify that as n → ∞ all terms of degree greater than 2 become negligible, and

that P (j) ≈ 1
2π

√
n

∫∞
−∞ e

−ij y√
n e−

m2σ2y2

2 dy. To this integral one can apply a
saddle-point approximation, then summing for different values of j one gets again
a Riemann sum as in De Moivre-Laplace theorem.

See Hans Fischer, A History of the Central Limit Theorem, Springer, 2011, Sec.
2.1.3

https://www.medicine.mcgill.ca/epidemiology/hanley/bios601/GaussianModel/HistoryCentralLimitTheorem.pdf


The modern proof, cf. Williams

Facts about characteristic functions (briefly: CFs):

• Taylor expansion: If E|X|k < ∞, then ϕX(t) =
∑k

j=0
E(Xj)

j! (it)j + o(tk). See
G& S, 5.7.4]

• A cumulative distribution function might be reconstructed from ϕX (Levy’s
inversion formula).

• Weak convergence of probability laws corresponds to pointwise convergence
of characteristic functions (Levy’s theorem).

Proof of the CLT.
Suppose (Xi)i have mean zero and variance 1. (Otherwise, start by introducing
the new variables X ′ = (X − µ)/σ.) Then

ϕSn/
√
n(t) = ϕX(t/

√
n) =

(
1− 1

2

t2

n
+ o(1)

)n

→ exp(−1

2
t2)

as n → ∞. The RHS is the CF of a standard normal distribution N (0, 1).



Theorem (Levy’s inversion formula; Williams 16.6)

Let ϕX be the CF of a random variable X that has mean µ and distribution function
F . Then, for a < b,

lim
T↑∞

1

2π

∫ T

−T

eita − eitb

it
ϕ(t) dt =

1

2
(µ({a}) + µ({b})) + µ(a, b) (3)

=
1

2
(F (b)− F (b−))− 1

2
(F (a)− F (a−)). (4)

Moreover, if
∫
R |ϕ(t)| dt < ∞, then X has continuous probability density function f

and
f(x) =

1

2π

∫
R
e−itxϕ(t) dt.



Theorem (Levy’s convergence theorem; Williams 18.1)

Let (Fn)n be a sequence of distribution functions, and ϕn denote the characteristic
function of Fn. Suppose that

g(t) = lim
n

ϕn(t)

exists for all t ∈ R and that g is continuous at 0. Then g = ϕF for some distribution
function F and Fn

w→ F .


