Ma140a Probability The Central Limit Theorem

Juan Pablo Vigneaux

Caltech

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

August 3, 2024

[Experimental results](#page-2-0)

[Experimental results](#page-2-0)

[De Moivre-Laplace Theorem](#page-3-0)

Theorem (De Moivre-Laplace)

Let $(X_i)_{i\geq 1}$ be a sequence of iid random variables, each with distribution $\text{Ber}(p)$, *defined on a probability space* $(\Omega, \mathcal{F}, \mathbb{P})$ *. Set* $S_n = X_1 + \cdots + X_n$ *and* $q = 1 - p$ *. Then for any constants* a and b *such that* $-\infty < a < b < +\infty$, we have

$$
\lim_{n \to \infty} \mathbb{P}\left(a < \frac{S_n - np}{\sqrt{npq}} \le b\right) = \frac{1}{2\pi} \int_a^b e^{-x^2/2} \, \mathrm{d}x. \tag{1}
$$

There is a very interesting discussion about the intuition behind this theorem here (whuber's answer): [https://stats.stackexchange.com/questions/3734/](https://stats.stackexchange.com/questions/3734/what-intuitive-explanation-is-there-for-the-central-limit-theorem) [what-intuitive-explanation-is-there-for-the-central-limit-theorem](https://stats.stackexchange.com/questions/3734/what-intuitive-explanation-is-there-for-the-central-limit-theorem)

Proof.

Denoting $x_k = (k - np)/\sqrt{npq}$, we rewrite the probability on the LHS of [\(1\)](#page-4-0) as \sum_{a $\binom{n}{k} p^k q^{n-k}.$ Then use that within that sum $k \sim np$ and $n-k \sim nq.$ Together with Stirling's approximation (which should also be credited to De Moivre!) and a Taylor expansion of the logarithm of $(\frac{np}{k})$ $(\frac{np}{k})^k(\frac{nq}{n-q})$ $\frac{ nq}{n-k})^{n-k},$ one proves that for $|x_k|$ bounded, $\binom{n}{k}$ $\binom{n}{k} p^k q^{n-k} \sim \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi npq}e^{-x_k^2/2}.$ By observing that $x_{k+1} - x_k = 1/\sqrt{npq}$, the sum $\sum_{a < x_k \leq b} {n \choose k}$ $\binom{n}{k} p^k q^{n-k} = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}\sum_{a< x_k\leq b}e^{-x_k^2/2}(x_{k+1}-x_k)$ can be seen as a Riemann sum approximating $(2\pi)^{-1/2}\int_a^b e^{-x^2/2}\,\mathrm{d} x.$

For details, see Chung and AitSahlia, *Elementary Probability Theory*, Springer, 2003.

 ${}^1f_n \sim g_n$ means that $\lim_n f_n/g_n = 1.$

[Experimental results](#page-2-0)

[De Moivre-Laplace Theorem](#page-3-0)

Generalization

Can we expect the same limiting behavior for an arbitrary sequence of random variables?

- We need some conditions. For instance, if $(X_i)_i$ is a sequence of iid variables following a Cauchy distribution, with p.d.f. $\frac{1}{\pi(1+x^2)}$, then the means $n^{-1}\sum_{i=1}^n$ are also Cauchy distributed. (You see that for these variables not even the LLN holds.)
- However, we shall prove that the theorem at least holds for any sequence $(X_i)_i$ of iid variables with finite nonzero variance σ^2 . (The Cauchy distribution has infinite variance.)
- The \sqrt{n} denominator gives the good scaling to get a limiting "shape" that's independent of n . This is because

$$
\mathbb{V}\left(\frac{\sum_{i=1}^{n} X_i}{\sqrt{n}}\right) = \mathbb{V}(X_1) = \sigma^2.
$$

Suppose for simplicity that $(X_i)_i$ is a sequence of iid random variables with mean $\mu=0$ and variance $\sigma^2=1.$

Suppose $\lim \frac{X_1+\dots+X_{2n}}{\sqrt{2n}}\sim Z$ (i.e. that in the limit the distribution is that of a random variable Z). Then it's also the case that

$$
\lim_{n} \frac{X_1 + \dots + X_n}{\sqrt{n}} + \frac{X_{n+1} + \dots + X_{2n}}{\sqrt{n}} \sim Z_1 + Z_2.
$$

Here (Z, Z_1, Z_2) are iid, and must have variance 1. It follows that $\sqrt{2}Z = Z_1 + Z_2$. If $Z \sim \mathcal{N}(0, 1)$ this equation is satisfied. It turns out that's the only solution.

Definition

We say that a sequence $(\mu_n)_n \subset \mathrm{Prob}(\mathbb{R})$, the probability distributions on \mathbb{R} , converges weakly to $\mu \in \mathrm{Prob}(\mathbb{R})$ if for all $h \in C_b(\mathbb{R})$ (bounded function) one has $\mu_n(h) \to \mu(h)$ as $n \to \infty$. This is denoted $\mu_n \stackrel{w}{\to} \mu$. We say that X_n converges to X in distribution, denoted $X_n\stackrel{D}{\to} X$ if $\Lambda_{X_n}\stackrel{w}{\to} \Lambda_X$

Theorem (CLT)

Let X_1, X_2, \ldots be a sequence of iid random variables with finite mean μ and finite *nonzero variance* σ^2 , and Z a normal random variable with mean 0 and variance 1. \mathcal{S} *et* $S_n = X_1 + \cdots + X_n$. Then,

$$
\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{D} Z \tag{2}
$$

There are several ways of proving the CLT, and all of them are involved in their own way.

We're going to follow the most "classic" path, via *characteristic functions.* The characteristic function of a real-valued random variable X is the complex-valued function $\phi_X(t)=\mathbb{E}(e^{itX})$ i.e. it's Fourier transform (although this was already considered by Laplace).

Theorem

If X and Y are independent, then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.

Laplace's idea for a proof

Supposing that X that X is discrete and bounded, one would write $\phi_X(t)=\sum_{k=-m}^m p_k e^{ikt},$ so that $\phi_{X_1+\cdots+X_n}(t)=(\phi_X(t))^n.$ By using the fact that 1 $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itx} e^{isx} dx = \delta_{ts}$, it follows that $P(j) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ijx} (\sum_{k=-m}^{m} p_k e^{ikt})^n dx$. Here $P(i)$ is the probability that $X_1 + \cdots + X_n$ equals *i*. This is an expression of what we would call today an *inversion formula*.

Then the idea is to expand $(\sum_{k=-m}^{m} p_{k}e^{ikt})^{n}$ as a power series in $k,$ and somehow justify that as $n \to \infty$ all terms of degree greater than 2 become negligible, and that $P(j) \approx \frac{1}{2\pi i}$ $\frac{1}{2\pi\sqrt{n}}\int_{-\infty}^{\infty}e^{-ij\frac{y}{\sqrt{n}}}e^{-\frac{m^2\sigma^2y^2}{2}}\,\mathrm{d}y.$ To this integral one can apply a *saddle-point approximation*, then summing for different values of j one gets again a Riemann sum as in De Moivre-Laplace theorem.

See Hans Fischer, *[A History of the Central Limit Theorem](https://www.medicine.mcgill.ca/epidemiology/hanley/bios601/GaussianModel/HistoryCentralLimitTheorem.pdf)*, Springer, 2011, Sec. 2.1.3

The modern proof, cf. Williams

Facts about characteristic functions (briefly: CFs):

- $\bullet \ \textsf{\texttt{Taylor}}$ expansion: If $\mathbb{E}|X|^k<\infty,$ then $\phi_X(t)=\sum_{j=0}^k$ $\mathbb{E}(X^j)$ $\frac{1}{j!}(it)^j+o(t^k).$ See G& S, 5.7.4]
- A cumulative distribution function might be reconstructed from ϕ_X (Levy's inversion formula).
- Weak convergence of probability laws corresponds to pointwise convergence of characteristic functions (Levy's theorem).

Proof of the CLT.

Suppose (X_i) have mean zero and variance 1. (Otherwise, start by introducing the new variables $X' = (X - \mu)/\sigma$.) Then

$$
\phi_{S_n/\sqrt{n}}(t)=\phi_X(t/\sqrt{n})=\left(1-\frac{1}{2}\frac{t^2}{n}+o(1)\right)^n\to \exp(-\frac{1}{2}t^2)
$$

as $n \to \infty$. The RHS is the CF of a standard normal distribution $\mathcal{N}(0, 1)$.

Theorem (Levy's inversion formula; Williams 16.6)

Let ϕ_X *be the CF of a random variable X that has mean* μ *and distribution function F.* Then, for $a < b$,

$$
\lim_{T \uparrow \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{ita} - e^{itb}}{it} \phi(t) dt = \frac{1}{2} (\mu(\{a\}) + \mu(\{b\})) + \mu(a, b)
$$
(3)

$$
= \frac{1}{2} (F(b) - F(b-)) - \frac{1}{2} (F(a) - F(a-)).
$$
(4)

Moreover, if $\int_\mathbb{R} |\phi(t)| \, \mathrm{d}t < \infty$, then X has continuous probability density function f *and*

$$
f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \phi(t) dt.
$$

Theorem (Levy's convergence theorem; Williams 18.1)

Let $(F_n)_n$ *be a sequence of distribution functions, and* ϕ_n *denote the characteristic function of* F_n *. Suppose that*

 $g(t) = \lim_{n} \phi_n(t)$

exists for all $t \in \mathbb{R}$ *and that* q *is continuous at* 0*. Then* $q = \phi_F$ *for some distribution function* F and $F_n \overset{w}{\rightarrow} F$.