Workshop 2

Wednesday, January 17th, 2021

1 Independence

Definition 1 (Independence). Let (Ω, \mathcal{F}, P) be a probability space.

• Sub- σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \cdots$ of \mathcal{F} are called independent if for every finite set $I = \{i_1, ..., i_n\}$ of distinct indexes and every $G_i \in \mathcal{G}_i, i \in I$,

$$P(\bigcap_{k=1}^{n} G_{i_k}) = \prod_{k=1}^{n} P(G_{i_k})$$

- Events E_1, E_2, \cdots in \mathcal{F} are called independent if the sub- σ -algebras $\sigma(E_1), \sigma(E_2), \ldots$ are independent.
- Random variables X_1, X_2, \dots are independent if the sub- σ -algebras $\sigma(X_1), \sigma(X_2), \dots$ are independent.

Exercise 1 (A way of verifying independence, cf. Williams 4.2). Let (Ω, \mathcal{F}, P) be a probability space.

1. Suppose \mathcal{G} and \mathcal{H} are sub- σ -algebras of \mathcal{F} and that \mathcal{I} and \mathcal{J} are π -systems such that $\mathcal{G} = \sigma(\mathcal{I})$ and $\mathcal{H} = \sigma(\mathcal{J})$. Prove that \mathcal{G} and \mathcal{H} are independent if and only if

$$\forall I \in \mathcal{I}, \, \forall J \in \mathcal{J}, \quad P(I \cap J) = P(I)P(J). \tag{1}$$

(Hint: First fix J and think about the functions $P_1(I) = P(I \cap J)$ and $P_2(I) = P(I)P(J)$ on \mathcal{I} .)

2. Deduce that (real-valued) random variables X and Y are independent if and only if

$$\forall (x,y) \in \mathbb{R}^2, \quad P(X \le x, Y \le y) = P(X \le x)P(Y \le y). \tag{2}$$

2 Second Borel-Cantelli lemma

Exercise 2 (The lemma). Suppose that the events $(E_n)_{n\in\mathbb{N}}$ are independent. Prove that if $\sum_n P(E_n) = \infty$ then $P(\limsup_n E_n) = 1$. (Hint: You'll have to use that $\prod_{m < n < r} (1 - p_n) \le \exp(-\sum_{n=m}^r p_n)$ whenever $0 \le p_n \le 1$.)

(finit. Four in have to use that $\prod_{m \le n \le r} (1 - p_n) \le \exp(-\sum_{n = m} p_n)$ whenever $0 \le p_n \le 1$.) Exercise 2 (An application of Williams E4.4). Suppose that a coin with probability n of he

Exercise 3 (An application, cf. Williams E4.4). Suppose that a coin with probability p of heads is tossed repeatedly. Let A_k be the event that a sequence of k (or more) consecutive heads occurs amongst tosses numbered 2^k , $2^k + 1$, $2^k + 2$, ..., $2^{k+1} - 1$. Prove that

$$P(A_k, \text{ i.o.}) = \begin{cases} 1 & \text{if } p \ge 1/2 \\ 0 & \text{if } p < 1/2 \end{cases}.$$
(3)

3 Tail σ -algebra

Let X_1, X_2, X_3, \dots be a sequence of random variables. Define

$$\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \dots), \quad \mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{T}_n.$$
(4)

The resulting collection of sets \mathcal{T} is called the **tail** σ -algebra of the sequence $(X_n)_{n>1}$.

Exercise 4. Prove that \mathcal{T} contains the event " $\sum_{n>1} X_n$ converges".

Exercise 5 (Kolmogorov's 0-1 law, cf. Williams 4.11). Suppose that the variables $(X_n)_{n\geq 1}$ are independent.

- 1. Prove that \mathcal{T} is independent from \mathcal{T} . (Hint: Prove first that $\mathcal{F}_n = \sigma(X_1, ..., X_n)$ and $\mathcal{T}_n = \sigma(X_{n+1}, ...)$ are independent. Take $n \to \infty$.)
- 2. Deduce that for any $F \in \mathcal{T}$, P(F) equals 0 or 1.
- 3. Prove that if $h: \Omega \to \mathbb{R}$ is measurable, then there exists $c \in [-\infty, \infty]$ such that P(h = c) = 1.

4 Some suggestions for independent work

- Exercise E4.1 in Williams' book is an extension of Exercise 1 here to three σ -algebras.
- If you're interested in number theory, consider solving exercise E4.2 in William's book.
- Exercises E4.4-E4.8 in that same book are good practice for the Borel-Cantelli lemmas.