Workshop 3

January 22-28, 2024

For this week's submitted solutions, you are encouraged to try exercises at the level of 4, 6, 7 or 9 here.

1 Short and basic exercises about integration

Exercise 1. Let (X, \mathcal{F}, μ) be a measure space and f an element of $m(\mathcal{F})^+$. Show that if $\mu(f) = 0$ then $\mu(\{f > 0\}) = 0$.

Exercise 2. Consider $f \in (m\mathcal{F})^+$ and $(f_n)_{n \in \mathbb{N}} \subset (m\mathcal{F})^+$ such that $f_n \uparrow f$, except for a μ -null set N (this means $\mu(N) = 0$). Show that $\mu(f_n) \uparrow \mu(f)$.

Exercise 3. Use the standard machine to prove the linearity of the integral: for any integrable functions f, g and any $\alpha, \beta \in \mathbb{R}$,

$$\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g).$$

2 Approximation by simpler functions and an implication of measurability

Exercise 4. Let (Ω, \mathcal{F}, P) be a probability triple.

1. Let X be a real-valued, bounded measurable function. Show that for all $\epsilon > 0$ there exists a finite partition $(A_i)_{i=1}^N \subset \mathcal{F}$ of Ω (which means that these sets are pairwise disjoint and their union is Ω) and real numbers $(\lambda_i)_{i=1}^N$, such that

$$\sup_{\omega \in \Omega} \left| X(\omega) - \sum_{i=1}^{N} \lambda_i I_{A_i}(\omega) \right| < \epsilon.$$
(1)

Here I_A denotes the indicator function of A: $I_A(\omega) = 1$ if and only if $\omega \in A$.

2. Let $Y : \Omega \to \mathbb{R}$ be a random variable. Use the previous result to show that if X is a bounded $\sigma(Y)$ -measurable function, then X = f(Y) for some Borel function $f : \mathbb{R} \to \mathbb{R}$. (Hint: Apply the insights from the standard machine.)

3 Convergence of integrals

Read first the statements and proofs of Fatou's lemma and Lebesgue's dominated convergence theorem.

Exercise 5 (cf. Williams E5.1). Consider the triple $([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is the Lebesgue measure. Define $f_n = nI_{[0,1/n)}$. Prove that $f_n \to f$ almost surely (a.s.) on [0,1], but that $\lambda(f_n) = 1$ for every $n \in \mathbb{N}$. Draw a picture of $g = \sup_n |f_n|$ and show that $g \notin \mathcal{L}^1([0,1], \mathcal{B}([0,1]), \lambda)$).

Exercise 6. Given a probability triple (Ω, \mathcal{F}, P) and a random variable X on it, we introduce the function¹

$$\phi(t) := P(e^{itX}) = \int_{\Omega} e^{itx} \mathrm{d}P(x).$$
⁽²⁾

Prove that ϕ is continuous on \mathbb{R} . (Hint: You may need that, for functions between metric spaces, continuity is equivalent to sequential continuity.)

4 Relative entropy a.k.a. Kullback-Leibler divergence

Let (X, \mathcal{F}) be a measurable space and μ , ν two $(\sigma$ -)finite measures on (X, \mathcal{F}) . If there exists an $f \in \mathcal{L}^1(X, \mathcal{F}, \nu)$ such that $\mu(A) = \int_A f d\nu$ for every $A \in \mathcal{F}$, we say that f is the Radon-Nikodym derivative of μ with respect to ν ; this is denoted $f = \frac{d\mu}{d\nu}$.

Exercise 7. Let $(\Omega, \mathcal{F}, \mu)$ be a probability triple. For every probability measure ρ on (Ω, \mathcal{F}) absolutely continuous with respect to μ , we introduce the quantity

$$D(\rho|\mu) = \int_{\Omega} \log \frac{\mathrm{d}\rho}{\mathrm{d}\mu} \,\mathrm{d}\rho,\tag{3}$$

called the relative entropy of ρ with respect to μ . Here we interpret log as an extended function from $[0,\infty)$ to $[-\infty,\infty)$, such that $\log 0 = -\infty$. Remember that $0 \leq \frac{d\rho}{d\mu} < \infty$ almost surely.

1. Show that

$$\int_{\Omega} \left| \log \frac{\mathrm{d}\rho}{\mathrm{d}\mu} \right| \,\mathrm{d}\rho = \int_{\left\{ \frac{\mathrm{d}\rho}{\mathrm{d}\mu} > 0 \right\}} \left| \log \frac{\mathrm{d}\rho}{\mathrm{d}\mu} \right| \,\mathrm{d}\rho \tag{4}$$

and that if any of these integrals converge, then

$$D(\rho|\mu) = \int_{\{\frac{d\rho}{d\mu} > 0\}} \log \frac{d\rho}{d\mu} \, d\rho.$$
(5)

2. (possibly more difficult) Show that if $\mu \ll \nu \ll \xi$, then

$$\frac{\mathrm{d}\mu}{\mathrm{d}\xi} = \frac{\mathrm{d}\mu}{\mathrm{d}\nu}\frac{\mathrm{d}\nu}{\mathrm{d}\xi}.\tag{6}$$

Two measures μ and ρ are called *equivalent* (denoted $\mu \sim \rho$) if $\mu \ll \rho$ and $\rho \ll \mu$. Use (6) to prove that if $\mu \sim \rho$, then

$$\frac{\mathrm{d}\rho}{\mathrm{d}\mu} = \left(\frac{\mathrm{d}\mu}{\mathrm{d}\rho}\right)^{-1} \tag{7}$$

3. Show that if $\rho \sim \mu$ and the integrals in (4) are finite, $D(\rho|\mu) \ge 0$. (Hint: log is concave, so...; you may use (7); be explicit with the necessary conditions of inequalities.)

$$\mu(h) = \mu(\operatorname{Re} h) + i\mu(\operatorname{Im} h).$$

¹By definition, a function $h: \Omega \to \mathbb{C}$ is integrable (with respect to a measure μ) if its real and imaginary parts are integrable (as real-valued functions); in this case,

5 Independence again

Exercise 8. (an easy one, but good warm-up) Let X and Y be independent Bernoulli random variables, both with parameter 1/2.

- 1. Compute the probability mass functions of X + Y and |X Y|.
- 2. Show that X + Y and |X Y| are dependent.
- 3. Show that X + Y and |X Y| are uncorrelated. (This means that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.)

Exercise 9.

1. Let X be a real-valued random variable with law Λ_X and cumulative distribution function (c.d.f.) F_X , and Y a real-valued random variable with law Λ_Y and c.d.f. F_Y . We denote by $\Lambda_{X,Y}$ the law of the joint variable (X, Y) and by $F_{X,Y}$ the corresponding c.d.f.:

$$F_{X,Y} := \Lambda_{X,Y}((-\infty, x] \times (-\infty, y]).$$
(8)

Prove that the following statements are equivalent:

- (a) X and Y are independent.
- (b) $\Lambda_{X,Y} = \Lambda_X \otimes \Lambda_Y$.
- (c) $F_{X,Y}(x,y) = F_X(x)F_Y(y)$.
- 2. Show that if (X, Y) has a joint probability density function $f_{X,Y}$ (with respect to the Lebesgue measure $\lambda^{\otimes 2}$), then some of the statements above (therefore each of them) is equivalent to
 - (a) $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for $\lambda^{\otimes 2}$ -almost every (x,y).

Remember that $f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dy$, etc. (Hint: Uniqueness lemma!)