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For this week’s submitted solutions, you are encouraged to try exercises at the level of 4, 6,
7 or 9 here.

1 Short and basic exercises about integration

Exercise 1. Let (X,F , µ) be a measure space and f an element of m(F)+. Show that if µ(f) = 0
then µ({f > 0}) = 0.

Exercise 2. Consider f ∈ (mF)+ and (fn)n∈N ⊂ (mF)+ such that fn ↑ f , except for a µ-null
set N (this means µ(N) = 0). Show that µ(fn) ↑ µ(f).

Exercise 3. Use the standard machine to prove the linearity of the integral: for any integrable
functions f , g and any α, β ∈ R,

µ(αf + βg) = αµ(f) + βµ(g).

2 Approximation by simpler functions and an implication
of measurability

Exercise 4. Let (Ω,F , P ) be a probability triple.

1. Let X be a real-valued, bounded measurable function. Show that for all ϵ > 0 there exists
a finite partition (Ai)

N
i=1 ⊂ F of Ω (which means that these sets are pairwise disjoint and

their union is Ω) and real numbers (λi)
N
i=1, such that

sup
ω∈Ω

∣∣∣∣∣X(ω)−
N∑
i=1

λiIAi(ω)

∣∣∣∣∣ < ϵ. (1)

Here IA denotes the indicator function of A: IA(ω) = 1 if and only if ω ∈ A.

2. Let Y : Ω → R be a random variable. Use the previous result to show that if X is a
bounded σ(Y )-measurable function, then X = f(Y ) for some Borel function f : R → R.
(Hint: Apply the insights from the standard machine.)

3 Convergence of integrals

Read first the statements and proofs of Fatou’s lemma and Lebesgue’s dominated convergence
theorem.

Exercise 5 (cf. Williams E5.1). Consider the triple ([0, 1],B([0, 1]), λ), where λ is the Lebesgue
measure. Define fn = nI[0,1/n). Prove that fn → f almost surely (a.s.) on [0, 1], but that λ(fn) =
1 for every n ∈ N. Draw a picture of g = supn |fn| and show that g /∈ L1([0, 1],B([0, 1]), λ)).

1



Exercise 6. Given a probability triple (Ω,F , P ) and a random variable X on it, we introduce
the function1

ϕ(t) := P (eitX) =

∫
Ω

eitxdP (x). (2)

Prove that ϕ is continuous on R. (Hint: You may need that, for functions between metric spaces,
continuity is equivalent to sequential continuity.)

4 Relative entropy a.k.a. Kullback-Leibler divergence

Let (X,F) be a measurable space and µ, ν two (σ-)finite measures on (X,F). If there exists an
f ∈ L1(X,F , ν) such that µ(A) =

∫
A
fdν for every A ∈ F , we say that f is the Radon-Nikodym

derivative of µ with respect to ν; this is denoted f = dµ
dν .

Exercise 7. Let (Ω,F , µ) be a probability triple. For every probability measure ρ on (Ω,F)
absolutely continuous with respect to µ, we introduce the quantity

D(ρ|µ) =
∫
Ω

log
dρ

dµ
dρ, (3)

called the relative entropy of ρ with respect to µ. Here we interpret log as an extended function
from [0,∞) to [−∞,∞), such that log 0 = −∞. Remember that 0 ≤ dρ

dµ < ∞ almost surely.

1. Show that ∫
Ω

∣∣∣∣log dρ

dµ

∣∣∣∣ dρ =

∫
{ dρ

dµ>0}

∣∣∣∣log dρ

dµ

∣∣∣∣ dρ (4)

and that if any of these integrals converge, then

D(ρ|µ) =
∫
{ dρ

dµ>0}
log

dρ

dµ
dρ. (5)

2. (possibly more difficult) Show that if µ ≪ ν ≪ ξ, then

dµ

dξ
=

dµ

dν

dν

dξ
. (6)

Two measures µ and ρ are called equivalent (denoted µ ∼ ρ) if µ ≪ ρ and ρ ≪ µ. Use (6)
to prove that if µ ∼ ρ, then

dρ

dµ
=

(
dµ

dρ

)−1

(7)

3. Show that if ρ ∼ µ and the integrals in (4) are finite, D(ρ|µ) ≥ 0. (Hint: log is concave,
so...; you may use (7); be explicit with the necessary conditions of inequalities.)

1By definition, a function h : Ω → C is integrable (with respect to a measure µ) if its real and imaginary parts
are integrable (as real-valued functions); in this case,

µ(h) = µ(Reh) + iµ(Imh).
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5 Independence again

Exercise 8. (an easy one, but good warm-up) Let X and Y be independent Bernoulli random
variables, both with parameter 1/2.

1. Compute the probability mass functions of X + Y and |X − Y |.

2. Show that X + Y and |X − Y | are dependent.

3. Show that X + Y and |X − Y | are uncorrelated. (This means that E(XY ) = E(X)E(Y ).)

Exercise 9.

1. Let X be a real-valued random variable with law ΛX and cumulative distribution function
(c.d.f.) FX , and Y a real-valued random variable with law ΛY and c.d.f. FY . We denote
by ΛX,Y the law of the joint variable (X,Y ) and by FX,Y the corresponding c.d.f.:

FX,Y := ΛX,Y ((−∞, x]× (−∞, y]). (8)

Prove that the following statements are equivalent:

(a) X and Y are independent.

(b) ΛX,Y = ΛX ⊗ ΛY .

(c) FX,Y (x, y) = FX(x)FY (y).

2. Show that if (X,Y ) has a joint probability density function fX,Y (with respect to the
Lebesgue measure λ⊗2), then some of the statements above (therefore each of them) is
equivalent to

(a) fX,Y (x, y) = fX(x)fY (y) for λ
⊗2-almost every (x, y).

Remember that fX(x) =
∫
R fX,Y (x, y) dy, etc.

(Hint: Uniqueness lemma!)
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