Some exercises that involve martingales

August 3, 2024

Exercise 1 (Azuma's inequality). Let $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{n \in \mathbb{N}_0}, P)$ be a filtered space and let $(Y_n)_{n \in \mathbb{N}_0}$ be a martingale with respect to that filtration. We suppose that there is a positive constant K such that $P(|Y_n - Y_{n-1}| \leq K) = 1$, for all $n \in \mathbb{N}$. In this exercise, you'll prove that

$$\forall n \in \mathbb{N}, \quad P(Y_n - Y_0 \ge x) \le \exp\left(-\frac{1}{2}\frac{x^2}{nK^2}\right),\tag{1}$$

which is a martingale analogue of Hoeffding's inequality.

1. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Pick $\psi > 0$. If D is a random variable such that $\mathbb{E}(D|\mathcal{G}) = 0$ and $P(|D| \leq 1) = 1$, then

$$\mathbb{E}(e^{\psi D}|\mathcal{G}) \le e^{\frac{1}{2}\psi^2}.$$
(2)

(Hint: Since $e^{\psi x}$ is convex in x,

$$e^{\psi x} \le \frac{1-x}{2}e^{-\psi} + \frac{x+1}{2}e^{\psi}$$
 whenever $-1 \le x \le 1.$ (3)

Take conditional expectations and use your best knowledge of elementary calculus to bound the resulting expression.)

Remember that Markov's inequality implies that, for all $\theta > 0$,

$$P(Y_n - Y_0 \ge x) \le e^{-\theta x} \mathbb{E}(e^{\theta(Y_n - Y_0)})$$

$$\tag{4}$$

2. Show that, for any $\theta > 0$,

$$\mathbb{E}(e^{\theta(Y_n - Y_0)} | \mathcal{F}_{n-1}) \le e^{\theta(Y_{n-1} - Y_0)} \exp\left(\frac{1}{2}\theta^2 K^2\right).$$
(5)

3. Conclude from (5) that

$$\mathbb{E}(e^{\theta(Y_n - Y_0)}) \le \exp\left(\frac{1}{2}n\theta^2 K^2\right).$$
(6)

Combined with (4), this last result implies that

$$P(Y_n - Y_0 \ge x) \le \exp\left(-\theta x + \frac{1}{2}n\theta^2 K^2\right)$$
(7)

4. Prove (1) finding an optimal θ . Then show that

$$P(|Y_n - Y_0| \ge x) \le 2 \exp\left(-\frac{1}{2}\frac{x^2}{nK^2}\right).$$
 (8)

Exercise 2 (Bellman's Optimality Principle, Williams, E10.2). Your winnings per unit stake on game n are ϵ_n , where $(\epsilon_n)_{n\in\mathbb{N}}$ are i.i.d. random variables such that $P(\epsilon_i = 1) = p > 1/2$ and $P(\epsilon_i = -1) = q := 1-p$, for all i. Your stake C_n on game n must lie between 0 and Z_{n-1} , where Z_{n-1} is your fortune at time n-1. Then, for all $n \geq 1$,

$$Z_{n+1} = Z_n - C_{n+1} + (1 + \epsilon_{n+1})C_{n+1}.$$
(9)

We suppose that Z_0 , the fortune at time 0, is a given constant. Your object is to maximize the expected *interest rate* $\mathbb{E}\log(Z_N/Z_0)$, where N is a given integer representing the length of the game.

Set $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(\epsilon_1, ..., \epsilon_n)$.

Show that if C is any "reasonable" previsible strategy (w.r.t. $\{\mathcal{F}_n\}_n$), then $\log Z_n - n\alpha$ is a supermartingale, where α denotes the 'relative entropy'

$$\alpha = p\log p + q\log q + \log 2,\tag{10}$$

and therefore $\mathbb{E}\log(Z_N/Z_0) \leq N\alpha$. Find then a previsible strategy C for which $\log Z_n - n\alpha$ is a martingale and show that this strategy maximizes $\mathbb{E}\log(Z_N/Z_0)$.

(Hints: Here "reasonable" means that $\log Z_n$ remains integrable for all n i.e. Z_n remains far enough from 0.

Write $C_{n+1} = K_{n+1}Z_n$, for certain previsible process $(K_n)_n$ with values in [0, 1]; prove first the elementary inequality

$$\forall x \in [0,1], \quad p \log(1+x) + q \log(1-x) \le \alpha.$$
 (11)

For which value(s) of x the equality holds?

You may use a result stated in a previous workshop: Let (Ω, \mathcal{F}, P) be a probability triple and \mathcal{G} a sub- σ -algebra of \mathcal{F} . Let X and Y be real valued random variables such that X is \mathcal{G} measurable and $\sigma(Y)$ is independent of \mathcal{G} ; we denote by $\Lambda_{X,Y}$ their joint law. Let $h : \mathbb{R}^2 \to \mathbb{R}$ be a function in $\mathcal{L}^1(\mathbb{R}^2, B(\mathbb{R}^2), \Lambda_{X,Y})$. Define $\gamma^h(x) = \mathbb{E}h(x, Y)$. The function $\gamma^h(X)$ is a version of the conditional expectation $\mathbb{E}(h(X,Y)|\mathcal{G})$.)

Exercise 3 (Williams, E10.5). Suppose that T is a stopping time such that for some $N \in \mathbb{N} = \{1, 2, 3, ...\}$ and some $\epsilon > 0$, we have, for every $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$:

$$P(T \le n + N | \mathcal{F}_n) > \epsilon, \quad \text{a.s.}$$

$$\tag{12}$$

Prove by induction that for every $k \in \mathbb{N}$,

$$P(T > kN) \le (1 - \epsilon)^k \tag{13}$$

and deduce from this that $\mathbb{E}(T) < \infty$.

(Hint: Use that
$$P(T > kN) = P(T > kN; T > (k-1)N) = \mathbb{E}(I_{\{T > kN\}}I_{\{T > (k-1)N\}})$$
.)

Exercise 4 (Williams, E10.7). Suppose that $(X_n)_{n\geq 0}$ are i.i.d. random variables with

$$P(X_i = 1) = p, \quad P(X_i = -1) = 1 - p =: q, \quad 0
(14)$$

and $p \neq q$. Suppose that a and b are integers such that 0 < a < b. Define $S_0 = a$ and $S_n = a + X_1 + \dots + X_n$ for $n \geq 1$.¹ We introduce the filtration given by $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ whenever $n \geq 1$, as well as the stopping time $T := \inf\{n \in \mathbb{N} \mid S_n = 0 \text{ or } S_n = b\}$.

¹This is different from the definition introduced in class: in principle S_n could go outside [0, b], but if S_n is a martingale then the stopped process $S_{T \wedge n}$ too.

- 1. Find N and ϵ such that T satisfies the condition (12) in Exercise 3.
- 2. Prove that $N_n = S_n n(p-q)$ is a martingale.
- 3. We already showed that $M_n = (q/p)^{S_n}$ is also a martingale. Deduce rigorously, using the preceding results, the value of $P(S_T = 0)$ and $\mathbb{E}(T)$