Workshop 7: Martingale convergence

August 3, 2024

1 Galton-Watson process

Exercise 1. A branching process $Z = \{Z_n : n \geq 0\}$ is constructed in the usual way. Thus, a family $\{X_k^{(n)}\}$ $\{n \atop k}$: $n, k \in \mathbb{N}\}$ of i.i.d. N₀-valued random variables is supposed given. we define $Z_0 := 0$ and then define recursively, for each $n \geq 0$,

$$
Z_{n+1} := X_1^{(n+1)} + \cdots X_{Z_n}^{(n+1)}.
$$
\n⁽¹⁾

Assume that if X denotes any one of the $X_k^{(n)}$ $k^{(n)}$, then

$$
\mu := \mathbb{E}(X) < \infty \quad \text{and} \quad 0 < \sigma^2 := \text{Var}(X) < \infty. \tag{2}
$$

- 1. Prove that $M_n := Z_n/\mu^n$ defines a martingale M relative to the filtration $\mathcal{F}_n = \sigma(Z_1, ..., Z_n)$.
- 2. Show that M_{∞} exists and is finite, almost surely.
- 3. Let $f(\theta) = \mathbb{E}(\theta^X)$ and $f_n(\theta) = \mathbb{E}(\theta^{Z_n})$. Prove that $f_{n+1} = f_n \circ f$ and hence that f_n is the n-fold composition of f. Moreover, prove that $L(\lambda) = \mathbb{E}(\exp(-\lambda M_{\infty}))$ is continuous on $(0, \infty)$ and satisfies the functional equation

$$
L(\lambda \mu) = f(L(\lambda)).
$$
\n(3)

Hint: For continuity, think about sequential continuity. To establish [\(3\)](#page-0-0), prove first that $\mathbb{E}(\exp(-\lambda M_n) = f_n(\exp(-\lambda/\mu^n)),$ where $f_n(\theta) = \mathbb{E}(\theta^{\mathcal{Z}_n}).$

4. Show that

$$
\mathbb{E}(Z_{n+1}^2|\mathcal{F}_n) = \mu^2 Z_n^2 + \sigma^2 Z_n \tag{4}
$$

and deduce that M is bounded in \mathcal{L}^2 (this is, that $\sup_n ||M_n||_2 < \infty$) if and only if $\mu > 1$. Use this to prove that, when $\mu > 1$, $\lim_{n} \mathbb{E}(M_n) = \mathbb{E}(M_{\infty})$.

5. Prove that

$$
Var(M_{\infty}) = \sigma^{2}(\mu(\mu - 1))^{-1}.
$$
\n(5)

Hint: See section 14.11 in Williams' book.

2 Uniform integrability

Exercise 2. Prove that a class C of random variables (on a probability triple (Ω, \mathcal{F}, P) ...) is uniformly integrable if and only if the following conditions hold (simultaneously):

- 1. C is bounded in \mathcal{L}^1 , i.e. $A := \sup{\{\mathbb{E}(|X|) : X \in \mathcal{C}\}} < \infty$;
- 2. for every $\epsilon > 0$, there exists $\delta > 0$ such that if $F \in \mathcal{F}$ satisfies $P(F) < \delta$ and $X \in \mathcal{C}$, then $\mathbb{E}(|X|; F) := \int_F |X| \,dP < \epsilon.$

Hint for 'if': For $X \in \mathcal{C}$, $P(|X| > K) \leq K^{-1}A$. Hint for 'only if': $\mathbb{E}(|X|; F) \leq \mathbb{E}(|X|; |X| > K) + KP(F)$.