## Problem set 1: Quotient topology; Homotopies

Due on Thursday, October 6th, at 11:59pm.

**Exercise 1.** There are four common definitions of the torus  $\mathbb{T}^2$ :

- 1. as  $\mathbb{R}^2/\mathbb{Z}^2$ , the plane module the equivalence relation given by  $(x, y) \sim (u, w)$  if and only if x - u and y - w are both integers;
- 2. as a square with opposite edges identified as in Figure 1;
- 3. as the product  $\mathbb{S}^1 \times \mathbb{S}^1$ , where  $\mathbb{S}^1$  is the set of solutions of  $x^2 + y^2 = 1$  in  $\mathbb{R}^2$  (equivalently, the set of  $z \in \mathbb{C}$  such that |z| = 1;
- 4. the set of solutions of  $(\sqrt{x^2 + y^2} R)^2 + z^2 = r^2$  in  $\mathbb{R}^3$ , for given R, r > 0.

Show that these are all homeomorphic to one another (try to be as explicit as possible).



Figure 1: A square with opposite sides identified.

**Exercise 2.** Show that the projective plane is homeomorphic to the mapping cone of the map  $z \mapsto z^2$  of the unit circle in the complex numbers to itself.

**Exercise 3.** Let  $X = \mathbb{S}^1 \vee \mathbb{S}^1$  be the "one-point union" of two circles (see Bredon, Problem 8 in Chapter I, Section 13). Let Y be the union of the unit circle (in  $\mathbb{R}^2$ ) with the segment  $\{(0, y) : -1 < y < 1\}$ . Show that X and Y are homotopically equivalent.

**Exercise 4.** A subset A of a topological space X is called a *retract* if there exists a continuous map  $r: X \to X$  such that r(X) = A and  $r|_A = id_A$ .

Show that a retract of a contractible space is contractible.