Workshop 2: Axioms of homology

August 4, 2024

Let **Top**₂ denote the category whose objects are pairs of topological spaces (X, A) with $A \subset X$, and whose arrows (morphisms) $f: (X, A) \to (Y, B)$ are given by continuous maps $f: X \to Y$ such that $f(A) \subset B$. We write X instead of (X, \emptyset) .

An homology theory is given by functors $\{H_n : \mathbf{Top}_2 \to \mathbf{Ab}\}_{n \in \mathbb{N}}$ and natural transformations $\{\partial_* \equiv \partial^n_* : H_n \Rightarrow H_{n-1} \circ \pi_2\}_{n \in \mathbb{N}}$, where $\pi_2(X, A) = (A, \emptyset)$. Each functor H_n maps a pair (X, A) to an abelian group $H_n(X, A)$ and $f: (X, A) \to (Y, B)$ to an homomorphism of groups $H_n(f) \equiv f_* : H_n(X, A) \to H_n(Y, B)$. The data are subject to the following axioms:

- 1. Homotopy axiom: If $f \simeq g: (X, A) \to (Y, B)$, then $f_* = g_*: H_n(X, A) \to H_n(Y, B)$ for every n.
- 2. Exactness axiom: For the inclusions $i: A \hookrightarrow X$ and $j: X \hookrightarrow (X, A)$, the sequence

$$\cdots \xrightarrow{\partial_*} H_p(A) \xrightarrow{i_*} H_p(X) \xrightarrow{j_*} H_p(X, A) \xrightarrow{\partial_*} H_{p-1}(A) \xrightarrow{i_*} \cdots$$
(1)

is exact.

3. Excision axiom: Given a pair (X, A) and an open set $U \subset X$ such that $\overline{U} \subset \operatorname{int}(A)$, the inclusion $k: (X \setminus U, A \setminus U) \hookrightarrow (X, A)$ induces an isomorphism

$$k_*: H_n(X \setminus U, A \setminus U) \to H_n(X, A)$$
⁽²⁾

for every n.

4. Dimension axiom: For a one-point space $P, H_i(P) = 0$ for all $i \neq 0$.

Solve the following problems using this axiomatic characterization of homology.

Exercise 1 (Homotopy invariance). Prove that if (X, A) and (Y, B) are homotopy equivalent,¹ then $H_n(X, A) \cong H_n(Y, B)$ for all n.

Exercise 2 (Finite additivity). Let X + Y denote the topological sum, and let $\iota_X : X \hookrightarrow X + Y$ and $\iota_Y: Y \hookrightarrow X + Y$ denote the canonical inclusions.² Prove that, for each n, the induced map

$$\iota_{X*} \oplus \iota_{Y*} : H_n(X) \oplus H_n(Y) \to H_n(X+Y)$$
(3)

is an isomorphism.

(Hint: Consider the exact sequence associated with the inclusion $X \hookrightarrow X + Y$.)

Exercise 3. Prove that for every space X and every integer n, $H_n(X, X) = 0$.

¹This is, there exists a map $f: X \to Y$ such that $f(A) \subset B$ with homotopy inverse $g: Y \to X$ such that

 $g(B) \subset A$ ²The underlying set of X + Y is the disjoint union of the sets X and Y. A subset U of X + Y is open if and only if its inverse images $\iota_X^{-1}(U)$ and $\iota_Y^{-1}(U)$ are open.

Exercise 4 (Reduced homology). Given $X \neq \emptyset$, consider the unique map $\epsilon : X \to P$. Given any $\iota : P \to X$, we have $\epsilon \circ \iota = id$, hence ϵ_* is onto. (Why?) We define the reduced homology \tilde{H} via the equations $\tilde{H}_0(X) = \ker \epsilon_*$, $\tilde{H}_i(X) = H_i(X)$ when $i \neq 0$, and $\tilde{H}_i(X, A) = H_i(A)$ for any i when $A \neq \emptyset$.

The maps $i: A \hookrightarrow X, j: X \hookrightarrow (X, A)$ and $\epsilon: (X, A) \to (P, P)$ induce a diagram (of solid lines)

$$H_{0}(A) \longrightarrow H_{0}(X)$$

$$\stackrel{\overline{\partial}_{*}}{\longrightarrow} \stackrel{\gamma}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} H_{0}(X)$$

$$H_{1}(X,A) \xrightarrow{\partial_{*}} H_{0}(A) \xrightarrow{i_{*}} H_{0}(X) \xrightarrow{i_{*}} H_{0}(X,A) \xrightarrow{\partial_{*}} H_{-1}(A)$$

$$\downarrow^{\epsilon_{*}} \qquad \downarrow^{\epsilon_{*}} \qquad \downarrow^{\epsilon_{*}} \qquad \downarrow^{\epsilon_{*}} \qquad \downarrow^{\epsilon_{*}}$$

$$H_{1}(P,P) = 0 \xrightarrow{\partial_{*}} H_{0}(P) \xrightarrow{\operatorname{id}_{*}} H_{0}(P) \longrightarrow H_{0}(P,P) = 0$$

- 1. Show that $i_*(\tilde{H}_0(A)) \subset \tilde{H}_0(X)$.
- 2. Show that im $\partial \subset \tilde{H}_0(A)$, and hence that there is a well defined map $\bar{\partial} : H_1(X, A) \to \tilde{H}_0(A)$.
- 3. Show that there the sequence

$$H_1(X,A) \to \tilde{H}_0(A) \to \tilde{H}_0(X) \to H_0(X,A)$$
 (4)

of induced maps (dotted arrows in the diagram) is exact and thus there is a long exact sequence of reduced homology groups for any pair (X, A).

Exercise 5 (Homology of spheres). We denote $H_0(P)$ by G.

- 1. Show that $\tilde{H}_0(S^0) = G$ and that $\tilde{H}_i(S^0) = 0$ for $i \neq 0$.
- 2. Show that, for any $n \ge 1$ and any integer $i, H_i(D^n, S^{n-1}) \cong H_{i-1}(S^{n-1})$. (Hint: a long exact sequence of reduced homology groups.)
- 3. Prove that for any $n \ge 1$ and any integer $i, H_i(S^n) \cong H_i(S^n, D^n_+)$, where D^n_+ denotes the "northern" hemisphere of the standard sphere S^n .
- 4. Prove that $H_i(S^n, D^n_+) \cong H_i(D^n, S^{n-1})$. (Hint: Excision.)
- 5. What is the reduced homology of the sphere S^n ?