Workshop 1: Fixed and periodic points, bifurcations April 11, 2024

Exercise 1. Consider the doubling function $D: [0,1) \to [0,1)$ defined by

$$D(x) = \begin{cases} 2x & \text{if } 0 \le x < 1/2\\ 2x - 1 & \text{if } 1/2 \le x < 1 \end{cases}.$$
 (1)

In other words, $D(x) = 2x \mod 1$.

- 1. Find explicit formulas for D^2 and D^3 .
- 2. Plot D, D^2 and D^3 . How should the graph of D^n look like?
- 3. Find the fixed points of D^2 and D^3 . How many fixed points does D^n have?

Exercise 2. Let f be a continuous map defined on the real line \mathbb{R} such that f' exists everywhere and is continuous too. Suppose that f has a fixed point x_0 such that $|f'(x_0)| > 1$. Show that there exists a neighborhood $N_a(x_0) := (x_0 - a, x_0 + a)$ with the following property: for all $x \in N_a(x_0) \setminus \{x_0\}$ there is an integer n such that $f^n(x) \notin N_a(x_0)$.

Exercise 3. Find a tangent bifurcation and a period-doubling bifurcation for $F_a(x) = a \sin(x)$.

Exercise 4. Consider the parametric family of functions $F_{\lambda}(x) = \lambda x(1-x)$, where the parameter λ is a real number. For which values of λ does F_{λ} have a stable fixed point at x = 0? For which values of λ does F_{λ} has a nonzero stable fixed point? Describe the bifurcation that happens at $\lambda = 1$. Sketch the bifurcation diagram near $\lambda = 1$.

Exercise 5. Each of the following functions undergoes a bifurcation at the given parameter value. In each case, use algebraic or graphical methods to identify the bifurcation as either tangent or period-doubling, or neither of these. Describe the orbits of any seed x_0 for parameter values below, at, and above the bifurcation value.

- (a) $F_{\lambda}(x) = x + x^2 + \lambda$ at $\lambda = 0$.
- (b) $F_{\lambda}(x) = x + x^2 + \lambda$ at $\lambda = -1$.
- (c) $G_{\mu}(x) = \mu x + x^3$ at $\mu = -1$.
- (d) $G_{\mu}(x) = \mu x + x^3$ at $\mu = 1$.

Exercise 6. Consider the parametric family of functions $Q_c(x) = x^2 + c$, where the parameter c is a real number. Find formulas for the period-2 points q_+ and q_- that arise with the bifurcation at c = -3/4. Prove that this 2-cycle is attracting for -5/4 < c < -3/4, neutral for c = -5/4, and repelling for c < -5/4.