Worksheet

August 5, 2024

1 Subshifts

Consider the set

$$\Sigma' = \{(s_0, s_1, s_2, ...) \in \Sigma : \text{ for every } j \in \mathbb{N}, \text{ if } s_j = 0 \text{ then } s_{j+1} = 1\}.$$
 (1)

Remark that if s belongs to Σ' , then $\sigma(s)$ also belongs to Σ' .

- Prove that periodic points (in Σ') are dense in Σ'. (Hint: We proved this for Σ. What could fail here? How do you fix that?)
- 2. Prove that if $s \notin \Sigma'$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \cap \Sigma' = \emptyset$
- 3. Prove that there is a dense orbit in Σ' .
- 4. Prove that $\sigma: \Sigma' \to \Sigma'$ is chaotic.

2 The tent map

Consider the map V(x) = 2|x| - 2.

- 1. Sketch the graph of V, together with the line y = x. Use graphical analysis to show $V^n(x) \to \infty$ when $x \notin [-2, 2]$.
- 2. Sketch the graph of V^2 and V^3 on [-2,2]. How is the graph of V^n ?
- 3. Prove that the system $V: [-2,2] \rightarrow [-2,2]$ is chaotic.

We introduce now the map $C: [-2,2] \to \mathbb{R}, x \mapsto -2\cos\left(\frac{\pi x}{2}\right)$.

- 4. Sketch the graph of C on [-2, 2]. What is the range of C? Is C injective?
- 5. Prove that $C \circ V = Q_{-2} \circ C$.
- 6. Using 3 and 5, prove that Q_{-2} is chaotic.

3 Chaos is preserved under conjugation

Let (X, d_X) and (Y, d_Y) be metric spaces, and $F : X \to X$ and $G : Y \to Y$ dynamical systems. A conjugation between F and G is an homeomorphism¹ $h : X \to Y$ such that $G \circ h = h \circ F$. Prove that the property of being chaotic is preserved under conjugation.

¹An homeomorphism is a continuous and invertible map whose inverse is also continuous.