Workshop 3: Two-dimensional systems

August 5, 2024

Adapted from Alligood et al., Chapter 2.

Exercise 1 (Hénon map). Consider the Hénon map

$$f_{a,b}(x,y) = (a - x^2 + by, x), \tag{1}$$

where a and b are real constants.

- 1. Under which conditions $f_{a,b}$ has fixed points?
- 2. Set b = 0.4.
 - (a) Prove that for -0.09 < a < 0.27, the Hénon map $f_{a,b}$ has one sink fixed point and one saddle fixed point.
 - (b) Find the highest magnitude eigenvalue of the Jacobian matrix at the first fixed point when a = 0.27. Explain the loss of stability of the sink.
 - (c) Prove that for 0.27 < a < 0.85, $f_{a,b}$ has a period-two sink.
 - (d) Find the largest magnitude eigenvalue of $Df_{a,b}^2$, the Jacobian of $f_{a,b}^2$, at the period-two orbit, when a = 0.85.
- 3. Prove that the Hénon map $f_{a,b}$ has a period-two orbit if and only if $4b > 3(1-b)^2$.

Exercise 2 (Stable and unstable manifold). Consider the fixed point 0 of the map $f(x, y) = (x/2, 2y - 7x^2)$.

- 1. Find the inverse map f^{-1} .
- 2. Show that the set $S = \{(x, 4x^2) : x \in \mathbb{R}\}$ is invariant under f, that is: if $v \in S$, then f(v) and $f^{-1}(v)$ are in S too.
- 3. Show that each point in S converges to 0 under f.
- 4. Show that no point outside of S converges to 0 under f.