Typicality for stratified measures

Juan Pablo Vigneaux

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

Zürich, September 6th, 2023

September 5, 2023 1/31

[Measure theory and limit laws](#page-2-0)

September 5, 2023 2/31

4 D F

Þ

Outline

1 [Measure theory and limit laws](#page-2-0)

Geometric [measure theory](#page-19-0)

[Stratified measures](#page-28-0)

[Open problems](#page-41-0)

 \sim \rightarrow

4 D F 一个问 э

Typicality

A random binary word $\mathbf{X} = (X_1, ..., X_n)$, with i.i.d. symbols, $X_i \sim \text{Ber}(q)$, is expected to have *nq* ones and $n(1 - q)$ zeroes.

There are roughly $\binom{n}{nq}\approx e^{nH(q)}$ of such words, and each has probability $\approx e^{-nH(q)}$.

Entropy:
$$
H(q) := -q \ln q - (1 - q) \ln(1 - q)
$$
.

More formally, one might introduce a set of "typical realizations" of X in two ways:

- **Weak or entropic**: Sequences $\mathbf{x} = (x_1, ..., x_n) \in \{0, 1\}^n$ such that $\left|-\frac{1}{n}\right|$ $\frac{1}{n} \ln \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n) - H(q) \le \delta.$
- **Strong** (when $0 < q < 1$): Sequences $\mathbf{x} \in \{0, 1\}^n$ such that $\left|\frac{1}{n}N(1;\mathbf{x})-q\right|<\delta.$

Law of large numbers: $-\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n\mathbb{P}(X_i=x_i)\to H(q)$ and $\frac{1}{n}N(1;\mathbf{x})\to q$ in probability. η are G.

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit theorems.

Fundamental ingredients:

 \bullet Set E of "elementary outcomes".

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit theorems.

Fundamental ingredients:

- \bullet Set E of "elementary outcomes".
- \bullet σ -algebra: distinguished collection $\mathfrak C$ of subsets of E, called "events".

 QQ

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit theorems.

Fundamental ingredients:

- \bullet Set E of "elementary outcomes".
- \bullet σ -algebra: distinguished collection $\mathfrak C$ of subsets of E, called "events".

3 Measure: a function $\mu : \mathfrak{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i);$ the measure is σ -finite is E can be partitioned into countably many events of finite μ -measure.

 QQ

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit theorems.

Fundamental ingredients:

- \bullet Set E of "elementary outcomes".
- **2** σ -algebra: distinguished collection \mathfrak{E} of subsets of E, called "events".

3 Measure: a function $\mu : \mathfrak{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i);$ the measure is σ -finite is E can be partitioned into countably many events of finite μ -measure.

• Probability measure: a measure ρ such that $\rho(E) = 1$.

 Ω

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit theorems.

Fundamental ingredients:

- \bullet Set E of "elementary outcomes".
- **2** σ -algebra: distinguished collection \mathfrak{E} of subsets of E, called "events".

3 Measure: a function $\mu : \mathfrak{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i);$ the measure is σ -finite is E can be partitioned into countably many events of finite μ -measure.

• Probability measure: a measure ρ such that $\rho(E) = 1$.

Absolute continuity $\rho \ll \mu$: there is a real-valued integrable function $f \equiv \frac{\mathrm{d}\rho}{\mathrm{d}u}$ $\frac{\mathrm{d} \rho}{\mathrm{d} \mu}$ such that $\rho(A) = \int_A f \, \mathrm{d} \mu$ $\rho(A) = \int_A f \, \mathrm{d} \mu$ $\rho(A) = \int_A f \, \mathrm{d} \mu$ [for](#page-7-0) [an](#page-9-0)[y](#page-3-0) $A \in \mathfrak{E}.$ $A \in \mathfrak{E}.$ $A \in \mathfrak{E}.$ $A \in \mathfrak{E}.$

 η are

Law of Large numbers and AEP

Setting: (E_X, \mathfrak{B}, μ) measure space; μ σ -finite; ρ proba; $\rho \ll \mu; \, f = \frac{\mathrm{d} \rho}{\mathrm{d} \mu}$ $rac{\mathrm{d}\rho}{\mathrm{d}\mu}$.

Entropy:
$$
H_{\mu}(\rho) := \mathbb{E}_{\rho} \left(- \ln \frac{d\rho}{d\mu} \right) = - \int_{E} f \ln f d\mu.
$$

A sequence $(X_1,...,X_n)$ of i.i.d. realizations of ρ has law $\rho^{\otimes n}$ (product) and density $f^{\otimes n}(x_1,...,x_n) = f(x_1) \cdots f(x_n)$.

 Ω

Law of Large numbers and AEP

Setting: (E_X, \mathfrak{B}, μ) measure space; μ σ -finite; ρ proba; $\rho \ll \mu; \, f = \frac{\mathrm{d} \rho}{\mathrm{d} \mu}$ $rac{\mathrm{d}\rho}{\mathrm{d}\mu}$.

Entropy:
$$
H_{\mu}(\rho) := \mathbb{E}_{\rho} \left(- \ln \frac{d\rho}{d\mu} \right) = - \int_{E} f \ln f d\mu.
$$

A sequence $(X_1,...,X_n)$ of i.i.d. realizations of ρ has law $\rho^{\otimes n}$ (product) and density $f^{\otimes n}(x_1,...,x_n) = f(x_1) \cdots f(x_n)$.

Proposition (AEP)

Suppose that the entropy $H_{\mu}(\rho) < \infty$. For every $\delta > 0$,

$$
W_{\delta}^{(n)} := \left\{ \left. \mathbf{x} \in E_X^n \right. : \left| -\frac{1}{n} \ln f^{\otimes n}(\mathbf{x}) - H_\mu(\rho) \right| < \delta \right\}.
$$
 (1)

Then, for every $\varepsilon > 0$, provided n big enough, $\mathbf{D}^{-}\rho^{\otimes n}(W^{(n)}_{\delta})$ $\binom{n}{\delta} > 1 - \varepsilon$ and $2 \ \ (1-\varepsilon) e^{n(H_\mu(\rho)-\delta)} \leq \mu^{\otimes n}(W^{(n)}_\delta)$ $\binom{n}{\delta} \leq e^{n(H_\mu(\rho)+\delta)}.$ $\binom{n}{\delta} \leq e^{n(H_\mu(\rho)+\delta)}.$

Examples AEP

\bullet E finite,

 μ counting measure, $f = \frac{d\rho}{du}$ $\frac{d\mu}{d\mu}$ probability mass function, $H_{\mu}^{}(\rho)=-\sum_{i\in E}f(i)$ In $f(i)$ discrete entropy, $\mu^{\otimes n}$ counting measure too. Therefore: $\# W^{(n)}_{\delta} \approx \exp(-n \sum_{i \in E} f(i) \ln f(i)).$

 \bullet E finite, μ counting measure, $f = \frac{d\rho}{du}$ $\frac{d\mu}{d\mu}$ probability mass function, $H_{\mu}^{}(\rho)=-\sum_{i\in E}f(i)$ In $f(i)$ discrete entropy, $\mu^{\otimes n}$ counting measure too. Therefore: $\# W^{(n)}_{\delta} \approx \exp(-n \sum_{i \in E} f(i) \ln f(i)).$ $\mathbf{P} = \mathbb{R}^d$, $\mu = \mathcal{L}^{\bm{d}}$ Lebesgue measure (d-volume), $f = \frac{\mathrm{d}\rho}{\mathrm{d}u}$ $\frac{\mathrm{d} \rho}{\mathrm{d} \mu}$ probability density function, $H_{\mu}(\rho)=-\int_{E}f$ In f differential entropy, $\nu^{\otimes n} = \mathcal{L}^{nd}$, the *nd*-dimensional volume. Therefore: vol $(W^{(n)}_{\delta})$ $S_{\delta}^{(n)}$) \approx exp($-n \int_E f \log f$).

Consider a probability measure $\rho = q \rho_1 + (1-q) \rho_0$ on $E_X = \mathbb{R}^d$, where:

- **1** $q \in [0, 1]$,
- $\mathbf{2} \;\; \rho_1 \ll \mu_1 = \mathit{L}^d, \; \text{the Lebesgue measure}.$
- \bullet $\rho_0 \ll \mu_0$, where μ_0 is the counting measure on a countable set $\mathcal{S} \subset \mathbb{R}^d$.

Remark: $\rho \ll \mu_1 + \mu_0$.

Lemma

$$
H_{\mu}(\rho)=H_{\#}(q)+qH_{\mu_1}(\rho_1)+(1-q)H_{\mu_0}(\rho_0).
$$

 QQ

Given an arbitrary probability measure ρ on \mathbb{R}^d , Renyi (1959) first discretized it through a measurable partition of \mathbb{R}^d into cubes with vertices in \mathbb{Z}^d/n , getting laws ρ_n with countable support.

If

$$
H_{\#}(\rho_n)=D\ln n+h+o(1)
$$

for some $D, h \in \mathbb{R}$, Renyi calls D the **information dimension** and h the D-dimensional entropy of the measure ρ .

When $\rho = q\rho_1 + (1 - q)\rho_0$ is a discrete continuous mixture:

$$
D = qd \text{ and } h = H_{\#}(q) + qH_{\mu_1}(\rho_1) + (1-q)H_{\mu_0}(\rho_0).
$$

Topological meaning of D?

つへへ

A first asymptotic analysis

Set $E_0=S$ and $E_1=\mathbb{R}^d\setminus S.$ Remark $\mu_1|_{E_1}=\mu_1$ and $\rho_1|_{E_1}=\rho_1.$

Partition
$$
E_X^n = (\mathbb{R}^d)^n
$$
 into strata $E_{y_1} \times \cdots E_{y_n}$, for any $\mathbf{y} = (y_1, ..., y_n) \in E_Y^n$, where $E_Y = \{0, 1\}$.

Then

$$
\rho^{\otimes n} = \sum_{\mathbf{y} \in E_Y^{\circ}} q^{N(1;\mathbf{y})} (1-q)^{n-N(1;\mathbf{y})} \rho_{y_1} \otimes \cdots \otimes \rho_{y_n}.
$$

4 0 F

造

 QQ

A first asymptotic analysis

Set
$$
E_0 = S
$$
 and $E_1 = \mathbb{R}^d \setminus S$. Remark $\mu_1|_{E_1} = \mu_1$ and $\rho_1|_{E_1} = \rho_1$.

Partition
$$
E_X^n = (\mathbb{R}^d)^n
$$
 into strata $E_{y_1} \times \cdots E_{y_n}$, for any $\mathbf{y} = (y_1, ..., y_n) \in E_Y^n$, where $E_Y = \{0, 1\}$.

Then

$$
\rho^{\otimes n} = \sum_{\mathbf{y} \in E_Y^p} q^{N(1;\mathbf{y})} (1-q)^{n-N(1;\mathbf{y})} \rho_{y_1} \otimes \cdots \otimes \rho_{y_n}.
$$

See **y** as realization of $(Y_1,...,Y_n) \sim \mathsf{Ber}(q)^{\otimes n}.$ Then $\mathcal{N}(1;\textbf{y}) \sim \mathsf{Bin}(n,q),$ which entails concentration of probability around its mean: for y strongly typical, $N(1; y) \approx nq$.

Consequently, a corresponding "typical stratum" $E_{y_1}\times\cdots E_{y_n}$ that "carries" $\rho_{\nu_1} \otimes \cdots \otimes \rho_{\nu_n}$ has roughly dimension *nqd*.

 Ω

Recall

$$
H_{\mu}(\rho)=H_{\#}(q)+qH_{\mu_1}(\rho_1)+(1-q)H_{\mu_0}(\rho_0).
$$

What is the meaning of this expression in terms of the AEP?

4 **D F**

э

Recall

$$
H_{\mu}(\rho)=H_{\#}(q)+qH_{\mu_1}(\rho_1)+(1-q)H_{\mu_0}(\rho_0).
$$

What is the meaning of this expression in terms of the AEP?

It holds that

$$
\underbrace{e^{nH_{\mu}(\rho)}}_{\approx\mu^{\otimes n}\text{-volume of }W^{(n)}(\rho)}=\underbrace{e^{nH_{\#}(q,1-q)}}_{\approx\# \text{ of typical strata}}\underbrace{e^{n(qH_{\mu_1}(\rho_1)+(1-q)H_{\mu_0}(\rho_0))}}_{\approx\text{volume of typical realizations,}
$$

4 **D F**

э

 QQ

[Measure theory and limit laws](#page-2-0)

2 Geometric [measure theory](#page-19-0)

[Stratified measures](#page-28-0)

[Open problems](#page-41-0)

 \sim \sim

4 ロ ▶ 4 何

重

Let ρ be a probability measure on \mathbb{R}^d .

If there is an *m*-dimensional manifold E, with $m < d$, such that $\rho(\mathbb{R}^d\setminus E)=0$, then $\rho\not\ll \mathcal{L}^d$. Hence the entropy $H_{\mathcal{L}^m}(\rho)$ is not defined. But ρ my have a density with respect to the natural *m*-dimensional volume.

Let ρ be a probability measure on \mathbb{R}^d .

If there is an *m*-dimensional manifold E, with $m < d$, such that $\rho(\mathbb{R}^d\setminus E)=0$, then $\rho\not\ll \mathcal{L}^d$. Hence the entropy $H_{\mathcal{L}^m}(\rho)$ is not defined. But ρ my have a density with respect to the natural m-dimensional volume.

Moreover, if $\rho_{\varepsilon} \to \rho$ weakly as $\varepsilon \to 0$, where ρ_{ε} is a noisy version of ρ , it holds that $H_{\ell,m}(\rho_{\varepsilon}) \to -\infty$ as $\varepsilon \to 0$.

This is consistent with the volume estimates presented above: the typical realizations of $\rho^{\otimes n}$ live in a space with vanishing \mathcal{L}^{nd} -volume.

September 5, 2023 13/31

 Ω

m-Hausdorff measure

The m-Hausdorff measure gives a notion of m-dimensional volume:

$$
\mathcal{H}^{m}(A) = \lim_{\delta \to 0} \inf_{\substack{\{S_i\}_{i \in \mathbb{N} \\ A \subset \bigcup_{j} S_i, \text{ diam } S_i < \delta}} \sum_{i \in I} w_m \left(\frac{\text{diam } S_i}{2}\right)^m, \tag{2}
$$

Figure: Case $m = 1$: the sum of diameters of smaller balls give a better approximation of the curve's length.

 Ω

Rectifiable sets

In GMT: Manifolds \rightsquigarrow Rectifiable sets (not necessarily smooth) Smooth maps \rightsquigarrow Lipschitz maps

Definition

A subset S of \mathbb{R}^d is:

- *m-rectifiable*, for $m \le d$, if it is the image of a bounded subset of \mathbb{R}^m under a Lipschitz map;
- \bullet countably m-rectifiable if it is a countable union of m-rectifiable sets.
- countably (H^m, m) -rectifiable if there exist countable m-rectifiable set containing \mathcal{H}^m -almost all of S.

Examples:

- countably 0-rectifiable: countable set.
- \mathbf{R}^d is countably d -rectifiable.
- \bullet \bullet An *[m](#page-19-0)*-dim[e](#page-18-0)nsional C^1 submanifold of \mathbb{R}^d is [co](#page-22-0)[un](#page-24-0)t[ab](#page-0-0)[ly](#page-24-0) *m*[-r](#page-28-0)e[c](#page-19-0)t[ifi](#page-28-0)ab[le.](#page-45-0)

[Insert drawing]

. p

K ロ ▶ K 何

Rectifiable measures

Let ρ be a locally finite and regular measure, and $s \in (0,\infty)$.

Limiting density: $\Theta_s(\rho, x) := \lim_{r \downarrow 0} \rho(B(x, r))/(w_s r^s)$

Theorem (Marstrand)

If $\Theta_{\varsigma}(\rho, x)$ exists and is strictly positive and finite for ρ -almost every x, then s is an integer not greater than n.

Theorem (Preiss)

... Moreover, there exists a countably (H^m, m) -rectifiable Borel set E such that $\rho \ll \mathcal{H}^m|_F$.

In particular, $\rho(\mathbb{R}^d \setminus E) = 0$. Such measures are called rectifiable.

Koliander, Pichler, Riegler, and Hlawatsch (2016) studied them from an information-theoretic viewpoint K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

September 5, 2023 17 / 31

Proposition

If S is a countably (\mathcal{H}^m,m) -rectifiable subset of \mathbb{R}^d , then

$$
S\subset S_0\cup\bigcup_{i=0}^\infty f_i(K_i)
$$

where:

- \bullet S₀ is H^m-null,
- $(\mathcal{K}_i)_i$ compact subsets of \mathbb{R}^m ,
- $(f_i)_i$ of Lipschitz functions from \mathbb{R}^m to \mathbb{R}^d .

In fact, it also holds that S is contained in the union of an \mathcal{H}^m -null set and countably many \mathcal{C}^1 manifolds.

Fact: an *m*-rectifiable measure ν is absolutely continuous with respect to the restricted measure $\mathcal{H}^m|_{E^*}$, where E^* is countably m -rectifiable. Call any such E^* a *carrier*.

In the case of discrete continuous mixtures, the sets E_0 and E_1 were carriers.

Lemma

Let S_i be a carrier of an m_i-rectifiable measure ν_i (for $i = 1, 2$). Then

- \mathcal{S}_i has Hausdorff dimension m_i;
- \bullet $S_1 \times S_2$ is a carrier of $\nu_1 \otimes \nu_2$, of Hausdorff dimension $m_1 + m_2$. Additionally,

$$
\mathcal{H}^{m_1+m_2}|_{\mathcal{S}_1\times \mathcal{S}_2}=\mathcal{H}^{m_1}|_{\mathcal{S}_1}\otimes \mathcal{H}^{m_2}|_{\mathcal{S}^2}.
$$

[Measure theory and limit laws](#page-2-0)

[Open problems](#page-41-0)

 \sim \sim

4 ロ ▶ 4 冊

重

Stratified measures

Definition (k-stratified measure)

A measure ν on \mathbb{R}^d is *k-stratified*, for $k\in\mathbb{N}^*$, if there are integers $(m_i)_{i=1}^k$ such that $0\leq m_1 < m_2 < ... < m_k \leq d$ and ν can be expressed as a sum $\sum_{i=1}^k \nu_i$, where each ν_i is a nonzero m_i -rectifiable measure.

Examples:

- \bullet 1-stratified = rectifiable: discrete measure, continuous measure, measure carried by a manifold.
- **2**-stratified: discrete-continuous mixtures

Standard form: one can find a sequence $(E_i)_{i=1}^k$ of *disjoint* rectifiable subsets of \mathbb{R}^d such that E_i is *countably m_i-rectifiable* for each i , and $\nu = \sum_{i=1}^k q_i \nu_i$ with ν_i probability measures, $\nu_i \ll \mathcal{H}^{m_i}|_{E_i}$.

Wh[e](#page-27-0)n ν pr[ob](#page-28-0)[abi](#page-30-0)[li](#page-28-0)[ty](#page-29-0) measure, [t](#page-40-0)hen $(q_1, ..., q_n)$ probability [v](#page-30-0)e[c](#page-28-0)t[o](#page-41-0)[r.](#page-27-0)

 Ω

 $\rho = \sum_{i=1}^k q_i \rho_i$ probability measure in standard form. $E_V = \{1, ..., k\}.$

Then:

$$
\rho^{\otimes n} = \sum_{\mathbf{y}=(y_1,\ldots,y_n)\in E_Y^{\circ}} q_1^{N(1;\mathbf{y})}\cdots q_k^{N(k;\mathbf{y})}\rho_{y_1}\otimes\cdots\otimes\rho_{y_n}.
$$

Each stratum $\Sigma_{y} = E_{y_1} \times \cdots \times E_{y_n}$ has Hausdorff dimension $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$.

The measure $\rho_{y_1}\otimes\dots\otimes\rho_{y_n}$ is absolutely continuous w.r.t. $\mu_{y_1}\otimes\dots\otimes\mu_{y_n},$ which by the result above is the $m(y)$ -Hausdorff measure on Σ_y .

 Ω

Asymptotic concentration

Recall: $N(i; y)/n \rightarrow q_i$ in probability. The set $A^{(n)}_{\delta'}$ $\delta^{(n)}_{\delta'}$ of $\mathbf{y}\in E_Y^n$ such that $|N(i;\mathbf{y})/n-q_i|<\delta',$ for all $i\in E_Y,$ concentrates almost all the probability when n is big (strong typicality).

Number of typical strata =
$$
\#A_{\delta'}^{(n)}\approx \exp(nH_{\#}(q_1,...,q_k))
$$
 .

Moreover,

$$
\rho^{\otimes n} \approx \rho^{(n)} := \sum_{\mathbf{y} \in A_{\delta'}^{(n)}} q_1^{N(1; \mathbf{y})} \cdots q_k^{N(k; \mathbf{y})} \underbrace{\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}}_{\ll H^{m(\mathbf{y})}|_{\Sigma_{\mathbf{y}}}}.
$$

For $\bm{{\mathsf{y}}} \in A^{(n)}_{\delta'}$ $_{\delta ^{\prime }}^{(n)}$, it holds that $m({\bf y})\approx n\sum_{i=1}^{k}q_{i}m_{i},$ and that conditional entropy $H(X|Y) := \sum_{i=1}^k q_i H_{\mu_i}(\rho_i)$ is such that

$$
\underbrace{\mu^{\otimes n}}_{\mathcal{H}^{m(\mathbf{y})}}(W^{(n)}_{\delta}(\rho) \cap \Sigma_{\mathbf{y}}) \approx \exp(nH(X|Y)).
$$

 $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.

- $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'}^{(n)}$ δ'_{n} strongly typical sequences with $\delta'_{n} = C_{(q_{1},...,q_{n})} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.

Œ.

 QQ

- $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'}^{(n)}$ δ'_{n} strongly typical sequences with $\delta'_{n} = C_{(q_{1},...,q_{n})} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}_{\delta,\delta'}^{(n)}$ $\mathcal{N}_{\delta,\delta'_n}^{(n)}(\mathsf{y})=W^{(n)}_\delta\cap \Sigma_\mathsf{y}$ for $\mathsf{y}\in A^{(n)}_{\delta'_n}$ δ'_{n} , doubly typical sequences.

- വൈറ

- $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'}^{(n)}$ $\delta_{\delta}^{(n)}$ strongly typical sequences with $\delta'_{n} = \mathcal{C}_{(q_{1},...,q_{n})} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}_{\delta,\delta'}^{(n)}$ $\mathcal{N}_{\delta,\delta'_n}^{(n)}(\mathsf{y})=W^{(n)}_\delta\cap \Sigma_\mathsf{y}$ for $\mathsf{y}\in A^{(n)}_{\delta'_n}$ δ'_{n} , doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^n m_{\mathsf{y}_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $\mathcal{T}_{\delta,\delta'_n}^{(n)}$ $\epsilon_{\delta,\delta'_n}^{(n)}(\mathbf{y}).$ n

 Ω

- $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'}^{(n)}$ $\delta_{\delta}^{(n)}$ strongly typical sequences with $\delta'_{n} = \mathcal{C}_{(q_{1},...,q_{n})} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}_{\delta,\delta'}^{(n)}$ $\mathcal{N}_{\delta,\delta'_n}^{(n)}(\mathsf{y})=W^{(n)}_\delta\cap \Sigma_\mathsf{y}$ for $\mathsf{y}\in A^{(n)}_{\delta'_n}$ δ'_{n} , doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^n m_{\mathsf{y}_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $\mathcal{T}_{\delta,\delta'_n}^{(n)}$ $\epsilon_{\delta,\delta'_n}^{(n)}(\mathbf{y}).$ n

Theorem

For any $\varepsilon>0$ and $\delta>0$, if n big enough, then $d_{\mathcal{TV}}(\rho^{\otimes n},\rho^{(n)})<\varepsilon$ where $\rho^{(n)}_{\delta\,\delta'}$ $\delta^{(n)}_{\delta,\delta'_n}=\sum_{\mathbf{y}\in A^{(n)}_{s'}}$ δ'_{n} $\rho^{\otimes n}|_{\mathcal{T}_{\delta,\delta'_n}^{(n)}(\mathsf{y})}.$

- $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'}^{(n)}$ $\delta_{\delta}^{(n)}$ strongly typical sequences with $\delta'_{n} = \mathcal{C}_{(q_{1},...,q_{n})} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}_{\delta,\delta'}^{(n)}$ $\mathcal{N}_{\delta,\delta'_n}^{(n)}(\mathsf{y})=W^{(n)}_\delta\cap \Sigma_\mathsf{y}$ for $\mathsf{y}\in A^{(n)}_{\delta'_n}$ δ'_{n} , doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^n m_{\mathsf{y}_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $\mathcal{T}_{\delta,\delta'_n}^{(n)}$ $\epsilon_{\delta,\delta'_n}^{(n)}(\mathbf{y}).$ n

Theorem

For any $\varepsilon>0$ and $\delta>0$, if n big enough, then $d_{\mathcal{TV}}(\rho^{\otimes n},\rho^{(n)})<\varepsilon$ where $\rho^{(n)}_{\delta\,\delta'}$ $\delta^{(n)}_{\delta,\delta'_n}=\sum_{\mathbf{y}\in A^{(n)}_{s'}}$ $\frac{(\alpha)}{\delta_0'}\frac{\rho^{\otimes n}|}{\mathcal{T}^{(n)}_{\delta,\delta_0'}(\mathsf{y})}.$ Moreover, $\rho^{(n)}$ is stratified: a sum of m-rectifiable measures for m in $[n\mathbb{E}(D) - n^{1/2+\xi}, n\mathbb{E}(D) + n^{1/2+\xi}]$. where $\mathbb{E}(D) = \sum_{i=1}^{k} q_i m_i$.

- $\rho = \sum_{i=1}^k q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'}^{(n)}$ $\delta_{\delta}^{(n)}$ strongly typical sequences with $\delta'_{n} = \mathcal{C}_{(q_{1},...,q_{n})} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}_{\delta,\delta'}^{(n)}$ $\mathcal{N}_{\delta,\delta'_n}^{(n)}(\mathsf{y})=W^{(n)}_\delta\cap \Sigma_\mathsf{y}$ for $\mathsf{y}\in A^{(n)}_{\delta'_n}$ δ'_{n} , doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^n m_{\mathsf{y}_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $\mathcal{T}_{\delta,\delta'_n}^{(n)}$ $\epsilon_{\delta,\delta'_n}^{(n)}(\mathbf{y}).$ n

Theorem

For any $\varepsilon>0$ and $\delta>0$, if n big enough, then $d_{\mathcal{TV}}(\rho^{\otimes n},\rho^{(n)})<\varepsilon$ where $\rho^{(n)}_{\delta\,\delta'}$ $\delta^{(n)}_{\delta,\delta'_n}=\sum_{\mathbf{y}\in A^{(n)}_{s'}}$ δ'_{n} $\rho^{\otimes n}|_{\mathcal{T}_{\delta,\delta'_n}^{(n)}(\mathsf{y})}.$ Moreover, $\rho^{(n)}$ is stratified: a sum of m-rectifiable measures for m in $[n\mathbb E(D)-n^{1/2+\xi},n\mathbb E(D)+n^{1/2+\xi}]$. where $\mathbb{E}(D) = \sum_{i=1}^{k} q_i m_i$. Finally, \textbf{D} For any $\textbf{y} \in A_{\delta'}^{(n)}$ $\begin{matrix} (n) & \frac{1}{n} \\ \delta'_n & \frac{1}{n} \end{matrix}$ $\frac{1}{n}$ In $\mathcal{H}^{m(\mathsf{y})}(\, \mathcal{T}_{\delta, \delta'_h}^{(n)}\,$ $H(X|Y) + (\delta + \delta'_n).$ \bullet For any $\varepsilon>0$, the set $\mathcal{B}^{(n)}_{\varepsilon}$ of $\mathsf{y}\in\subset\mathcal{A}^{(n)}_{\delta'}$ δ'_{n} such that 1 $\frac{1}{n}$ In $\mathcal{H}^{m(\mathsf{y})}(\, \mathcal{T}_{\delta, \delta'_\kappa}^{(n)}\,$ $\delta^{(n)}_{\delta, \delta'_{n}}({\bf y}))> H(X|Y) - \varepsilon + (\delta + \delta'_{n}),$ satisfies lim sup $_{\delta\rightarrow0^+}$ lim sup $_{n\rightarrow\infty} \frac{1}{n}$ $\frac{1}{n}$ ln $|B_{\varepsilon}^{(n)}| = H(Y).$

Back to Renyi: Dimension

Verdú and Wu proved:

$$
\dim_I \rho = \lim_{\varepsilon \to 0} \mathbb{E}_{\rho} \left(\frac{\ln \rho(B(X, \varepsilon))}{\ln \varepsilon} \right), \tag{3}
$$

where B denotes an Euclidean ball.

Preiss' theorem: a measure ρ is m-rectifiable if and only if the density $\Theta_m(\rho, x)$ exists and is finite and nonzero for ρ -almost every x. In particular,

$$
\lim_{\varepsilon \to 0} \frac{\ln \rho(B(x,\varepsilon))}{\ln \varepsilon} = m \quad \rho\text{-a.e.}
$$

Therefore dim_I $\rho = m$, provided one can exchange the limit and the expectation in [\(3\)](#page-39-1). We say ρ is dimensional regular.

For a stratified measure $\rho=\sum_{i=1}^k q_i\rho_i$, with ρ_i being m_i -rectifiable and dimensi[on](#page-38-0)al regular, Renyi's information dimension [is](#page-40-0) $\mathit{D}=\sum_{i=1}^{k}q_{i}m_{i}$ $\mathit{D}=\sum_{i=1}^{k}q_{i}m_{i}$

Rectifiable entropy differs from Renyi's dimensional entropy

Theorem (Perez, Csiszar, ...)

 $\bullet \mu$ be a σ -finite measure, ρ proba., $\rho \ll \mu$. Then

$$
\frac{\mathrm{d}\rho}{\mathrm{d}\mu} = \lim_{n} \sum_{\substack{\mathbf{j} \in \mathbb{Z}^d \\ \mu(C_{2^n,\mathbf{j}}) > 0}} \frac{\rho(C_{2^n,\mathbf{j}})}{\mu(C_{2^n,\mathbf{j}})} \chi_{C_{2^n,\mathbf{j}}}
$$

almost surely and in L^1 .

 $2 \rho \ll H^m|_E$ for some (H^m, m) -rectifiable Borel set E. Suppose $\mu:=\mathcal{H}^m|_E$ is a finite measure and that $\frac{\mathrm{d}\rho}{\mathrm{d}\mu}$ is bounded. Then

$$
H_{\mu}(\rho) = \lim_{n} \left(H_{\#}(\rho_{2^n}) + \sum_{\substack{\mathbf{j} \in \mathbb{Z}^d \\ p_{2^n, \mathbf{j}} > 0}} p_{2^n, \mathbf{j}} \ln \mu(C_{2^n, \mathbf{j}}) \right).
$$
 (5)

 Ω

(4)

[Measure theory and limit laws](#page-2-0)

B **D** September 5, 2023 27 / 31

 \sim \mathcal{A}

イロト 一、一句 重

Rate-distortion function (RDF)

Given a probability measure ρ on \mathbb{R}^d , the (Euclidean, quadratic) RDF maps $D \in (0, \infty)$ to

$$
R_{\rho}(D) = \inf_{\{K(y|x): \int ||x-y||^2 \, K(y|x), d\rho(x) < D\}} I(\mathbf{X}, \mathbf{Y}), \tag{6}
$$

where $\mathbf{X} \sim \rho$, $K(\mathbf{y}|\mathbf{x})$ is a stochastic transition kernel that gives the distribution of $\mathbf{Y} \in \mathbb{R}^{d}$, and $I(\mathbf{X},\mathbf{Y})$ is the mutual information introduced by Kolmogorov (via finite partitions).

Classical result: when $\mathbf{X} \sim \rho$ on \mathbb{R}^d has a sufficiently smooth density f ,

$$
R_{\rho}(D) \sim -\frac{k}{2}\log(2\pi e D) - \int f \ln f \, dx
$$

as $D \rightarrow 0$.

Dembo and Kawabata: $\lim_{D\to 0} \frac{R_\rho(D)}{-\frac{1}{2}\log D}$ $\frac{R_{\rho}(D)}{-\frac{1}{2}\log D}=\dim_{I}(\rho).$ Charusaie *et al.*: define the **dimensional-rate bias** $b(\rho)$ as

$$
\lim_{D \to 0} \left(R_{\rho}(D) - \underbrace{\left(-\frac{\dim_I(\rho)}{2} \log D + f(\dim_I \rho) \right)}_{= H_{\mathcal{L}^k}(\mathbf{X}) \text{ where } \mathbf{X} \sim \mathcal{N}_r(0, \alpha I) \text{ and } \mathbb{E}(\|\mathbf{X}\|^2) = D \right)
$$

when it exists.

Analogous to Renyi's definition of the dimensional entropy.

They proved that when ρ is affinely singular (stratified, with each E_i a union of affine m_i -dimensional spaces), then $b(\rho) = H_\mu(\rho)$. In this case μ is a sum of Lebesgue measures.

How about general stratified measures?

(7)

 QQ

How to device a statistical test to establish that a certain measure from which we can draw samples is rectifiable? And stratified?

Could we use that if ρ is *m*-rectifiable then

$$
\lim_{\varepsilon \to 0} \frac{\ln \rho(B(x,\varepsilon))}{\ln \varepsilon} = m \quad \rho\text{-a.e.}
$$
?

 QQ

Conclusion

- A measure-theoretic statement of the AEP for memoryless sources with general alphabets gives a unifying picture of the asymptotic behavior of discrete, continuous, discrete-continuous, rectifiable and stratified sources (measures).
- Geometric measure theory provides a very robust and general language to talk about measures that "live" on a geometric space.
- Typical realizations of a stratified measure concentrate on strata of a few typical dimensions, around a mean value that "coincides" with its information dimension.
- The entropy of a stratified measure satisfies a chain rule whose conditional term quantifies the typical realizations in each typical stratum.
- The standard entropy, defined via density, in general differs from Renyi's d-dimensional entropy.
- Open problems concerning: information dimension of rectifiable measures, asymptotic behavior of RDF, stat[ist](#page-44-0)i[ca](#page-45-0)[l](#page-44-0) [tes](#page-45-0)[t](#page-40-0) [f](#page-41-0)[or](#page-45-0) [r](#page-40-0)[e](#page-41-0)[cti](#page-45-0)[fia](#page-0-0)[bili](#page-45-0)ty.