Typicality for stratified measures

Juan Pablo Vigneaux

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

Zürich, September 6th, 2023

1 Measure theory and limit laws

September 5, 2023 2/31

Outline

1 Measure theory and limit laws

2 Geometric measure theory

3 Stratified measures

Open problems

Typicality

A random binary word $\mathbf{X} = (X_1, ..., X_n)$, with i.i.d. symbols, $X_i \sim Ber(q)$, is expected to have nq ones and n(1 - q) zeroes.

There are roughly $\binom{n}{nq} \approx e^{nH(q)}$ of such words, and each has probability $\approx e^{-nH(q)}$.

Entropy:
$$H(q) := -q \ln q - (1-q) \ln (1-q).$$

More formally, one might introduce a set of "typical realizations" of ${\boldsymbol{\mathsf{X}}}$ in two ways:

Weak or entropic: Sequences x = (x₁,...,x_n) ∈ {0,1}ⁿ such that |-¹/_n ln ℙ(X₁ = x₁) ··· ℙ(X_n = x_n) - H(q)| < δ.
Strong (when 0 < q < 1): Sequences x ∈ {0,1}ⁿ such that |¹/₂N(1; x) - q| < δ.

Law of large numbers: $-\frac{1}{n}\sum_{i=1}^{n}\mathbb{P}(X_i = x_i) \to H(q) \text{ and } \frac{1}{n}N(1; \mathbf{x}) \to q \text{ in probability.}$

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize *probability* and formalize limit theorems.

Fundamental ingredients:

Set E of "elementary outcomes".

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize *probability* and formalize limit theorems.

Fundamental ingredients:

- Set E of "elementary outcomes".
- **2** σ -algebra: distinguished collection \mathfrak{E} of subsets of E, called "events".

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize *probability* and formalize limit theorems.

Fundamental ingredients:

- Set E of "elementary outcomes".
- **2** σ -algebra: distinguished collection \mathfrak{E} of subsets of E, called "events".
- **Some a sume**: a function $\mu : \mathfrak{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$; the measure is σ -finite is E can be partitioned into countably many events of finite μ -measure.

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize *probability* and formalize limit theorems.

Fundamental ingredients:

- Set E of "elementary outcomes".
- **2** σ -algebra: distinguished collection \mathfrak{E} of subsets of E, called "events".

3 Measure: a function $\mu : \mathfrak{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$; the measure is σ -finite is E can be partitioned into countably many events of finite μ -measure.

9 Probability measure: a measure ρ such that $\rho(E) = 1$.

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize *probability* and formalize limit theorems.

Fundamental ingredients:

- Set E of "elementary outcomes".
- **2** σ -algebra: distinguished collection \mathfrak{E} of subsets of E, called "events".

3 Measure: a function $\mu : \mathfrak{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$; the measure is σ -finite is E can be partitioned into countably many events of finite μ -measure.

9 Probability measure: a measure ρ such that $\rho(E) = 1$.

3 Absolute continuity $\rho \ll \mu$: there is a real-valued integrable function $f \equiv \frac{d\rho}{d\mu}$ such that $\rho(A) = \int_A f \, d\mu$ for any $A \in \mathfrak{E}$.

Law of Large numbers and AEP

Setting: (E_X, \mathfrak{B}, μ) measure space; $\mu \sigma$ -finite; ρ proba; $\rho \ll \mu$; $f = \frac{d\rho}{d\mu}$.

Entropy:
$$H_{\mu}(\rho) := \mathbb{E}_{\rho}\left(-\ln \frac{\mathrm{d}\rho}{\mathrm{d}\mu}\right) = -\int_{\mathcal{E}} f \ln f \,\mathrm{d}\mu.$$

A sequence $(X_1, ..., X_n)$ of i.i.d. realizations of ρ has law $\rho^{\otimes n}$ (product) and density $f^{\otimes n}(x_1, ..., x_n) = f(x_1) \cdots f(x_n)$.

Law of Large numbers and AEP

Setting: (E_X, \mathfrak{B}, μ) measure space; $\mu \sigma$ -finite; ρ proba; $\rho \ll \mu$; $f = \frac{d\rho}{d\mu}$.

Entropy:
$$H_{\mu}(\rho) := \mathbb{E}_{\rho}\left(-\ln \frac{\mathrm{d}\rho}{\mathrm{d}\mu}\right) = -\int_{E} f \ln f \,\mathrm{d}\mu.$$

A sequence $(X_1, ..., X_n)$ of i.i.d. realizations of ρ has law $\rho^{\otimes n}$ (product) and density $f^{\otimes n}(x_1, ..., x_n) = f(x_1) \cdots f(x_n)$.

Proposition (AEP)

Suppose that the entropy ${\it H}_{\mu}(
ho)<\infty.$ For every $\delta>0$,

$$W_{\delta}^{(n)} := \left\{ \left. \mathbf{x} \in E_X^n \right| : \left| -\frac{1}{n} \ln f^{\otimes n}(\mathbf{x}) - H_{\mu}(\rho) \right| < \delta \right\}.$$
(1)

Then, for every $\varepsilon > 0$, provided n big enough, • $\rho^{\otimes n}(W_{\delta}^{(n)}) > 1 - \varepsilon$ and • $(1 - \varepsilon)e^{n(H_{\mu}(\rho) - \delta)} \le \mu^{\otimes n}(W_{\delta}^{(n)}) \le e^{n(H_{\mu}(\rho) + \delta)}.$

E finite,

$$\begin{split} & \mu \text{ counting measure,} \\ & f = \frac{\mathrm{d}\rho}{\mathrm{d}\mu} \text{ probability mass function,} \\ & H_{\mu}(\rho) = -\sum_{i \in E} f(i) \ln f(i) \text{ discrete entropy,} \\ & \mu^{\otimes n} \text{ counting measure too.} \\ & \text{Therefore: } \# W_{\delta}^{(n)} \approx \exp(-n\sum_{i \in E} f(i) \ln f(i)). \end{split}$$

 E finite, μ counting measure, $f = \frac{d\rho}{d\mu}$ probability mass function, $H_{\mu}(\rho) = -\sum_{i \in F} f(i) \ln f(i)$ discrete entropy, $\mu^{\otimes n}$ counting measure too. Therefore: $\#W_{s}^{(n)} \approx \exp(-n\sum_{i \in F} f(i) \ln f(i)).$ $E = \mathbb{R}^d.$ $\mu = \mathcal{L}^d$ Lebesgue measure (*d*-volume), $f = \frac{d\rho}{d\mu}$ probability density function, $H_{\mu}(\rho) = -\int_{F} f \ln f$ differential entropy, $\nu^{\otimes n} = \mathcal{L}^{nd}$, the *nd*-dimensional volume. Therefore: vol $(W_{\delta}^{(n)}) \approx \exp(-n \int_{F} f \log f)$.

Consider a probability measure $\rho = q\rho_1 + (1-q)\rho_0$ on $E_X = \mathbb{R}^d$, where:

- **1** $q \in [0, 1]$,
- 2 $\rho_1 \ll \mu_1 = L^d$, the Lebesgue measure.
- $\rho_0 \ll \mu_0$, where μ_0 is the counting measure on a countable set $S \subset \mathbb{R}^d$.

Remark: $\rho \ll \mu_1 + \mu_0$.

Lemma

$$H_{\mu}(
ho) = H_{\#}(q) + qH_{\mu_1}(
ho_1) + (1-q)H_{\mu_0}(
ho_0).$$

Given an arbitrary probability measure ρ on \mathbb{R}^d , Renyi (1959) first discretized it through a measurable partition of \mathbb{R}^d into cubes with vertices in \mathbb{Z}^d/n , getting laws ρ_n with countable support.

lf

$$H_{\#}(\rho_n) = D \ln n + h + o(1)$$

for some $D, h \in \mathbb{R}$, Renyi calls D the **information dimension** and h the *D*-dimensional entropy of the measure ρ .

When $\rho = q\rho_1 + (1 - q)\rho_0$ is a discrete continuous mixture:

$$D = qd$$
 and $h = H_{\#}(q) + qH_{\mu_1}(\rho_1) + (1-q)H_{\mu_0}(\rho_0).$

Topological meaning of D?

A first asymptotic analysis

Set $E_0 = S$ and $E_1 = \mathbb{R}^d \setminus S$. Remark $\mu_1|_{E_1} = \mu_1$ and $\rho_1|_{E_1} = \rho_1$.

Partition
$$E_X^n = (\mathbb{R}^d)^n$$
 into strata $E_{y_1} \times \cdots \in E_{y_n}$, for any $\mathbf{y} = (y_1, ..., y_n) \in E_Y^n$, where $E_Y = \{0, 1\}$.

Then

$$\rho^{\otimes n} = \sum_{\mathbf{y} \in E_Y^n} q^{N(1;\mathbf{y})} (1-q)^{n-N(1;\mathbf{y})} \rho_{y_1} \otimes \cdots \otimes \rho_{y_n}.$$

э

A first asymptotic analysis

Set
$$E_0 = S$$
 and $E_1 = \mathbb{R}^d \setminus S$. Remark $\mu_1|_{E_1} = \mu_1$ and $\rho_1|_{E_1} = \rho_1$.

Partition
$$E_X^n = (\mathbb{R}^d)^n$$
 into strata $E_{y_1} \times \cdots \in E_{y_n}$, for any $\mathbf{y} = (y_1, \dots, y_n) \in E_Y^n$, where $E_Y = \{0, 1\}$.

Then

$$\rho^{\otimes n} = \sum_{\mathbf{y} \in E_Y^n} q^{N(1;\mathbf{y})} (1-q)^{n-N(1;\mathbf{y})} \rho_{y_1} \otimes \cdots \otimes \rho_{y_n}.$$

See **y** as realization of $(Y_1, ..., Y_n) \sim \text{Ber}(q)^{\otimes n}$. Then $N(1; \mathbf{y}) \sim \text{Bin}(n, q)$, which entails concentration of probability around its mean: for **y** strongly typical, $N(1; \mathbf{y}) \approx nq$.

Consequently, a corresponding "typical stratum" $E_{y_1} \times \cdots \otimes E_{y_n}$ that "carries" $\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}$ has roughly dimension *nqd*.

Recall

$$H_{\mu}(
ho) = H_{\#}(q) + qH_{\mu_1}(
ho_1) + (1-q)H_{\mu_0}(
ho_0).$$

What is the meaning of this expression in terms of the AEP?

Recall

$$H_{\mu}(\rho) = H_{\#}(q) + qH_{\mu_1}(\rho_1) + (1-q)H_{\mu_0}(\rho_0).$$

What is the meaning of this expression in terms of the AEP?

It holds that

$$\underbrace{e^{nH_{\mu}(\rho)}}_{\approx\mu^{\otimes n}\text{-volume of }W^{(n)}(\rho)} = \underbrace{e^{nH_{\#}(q,1-q)}}_{\approx\# \text{ of typical }\mathbf{y}} \underbrace{e^{n(qH_{\mu_1}(\rho_1)+(1-q)H_{\mu_0}(\rho_0))}}_{\text{ ovlume of typical realizations}},$$

Measure theory and limit laws

2 *Geometric* measure theory

3 Stratified measures

Open problems

September 5, 2023 12 / 31

Let ρ be a probability measure on \mathbb{R}^d .

If there is an *m*-dimensional manifold *E*, with m < d, such that $\rho(\mathbb{R}^d \setminus E) = 0$, then $\rho \ll \mathcal{L}^d$. Hence the entropy $H_{\mathcal{L}^m}(\rho)$ is not defined. But ρ my have a density with respect to the natural *m*-dimensional volume. Let ρ be a probability measure on \mathbb{R}^d .

If there is an *m*-dimensional manifold *E*, with m < d, such that $\rho(\mathbb{R}^d \setminus E) = 0$, then $\rho \ll \mathcal{L}^d$. Hence the entropy $H_{\mathcal{L}^m}(\rho)$ is not defined. But ρ my have a density with respect to the natural *m*-dimensional volume.

Moreover, if $\rho_{\varepsilon} \to \rho$ weakly as $\varepsilon \to 0$, where ρ_{ε} is a noisy version of ρ , it holds that $\mathcal{H}_{\mathcal{L}^m}(\rho_{\varepsilon}) \to -\infty$ as $\varepsilon \to 0$.

This is consistent with the volume estimates presented above: the typical realizations of $\rho^{\otimes n}$ live in a space with vanishing \mathcal{L}^{nd} -volume.

m-Hausdorff measure

The *m*-Hausdorff measure gives a notion of *m*-dimensional volume:

$$\mathcal{H}^{m}(A) = \lim_{\delta \to 0} \inf_{\substack{\{S_{i}\}_{i \in \mathbb{N}} \\ A \subset \bigcup_{i} S_{i}, \text{ diam } S_{i} < \delta}} \sum_{i \in I} \underbrace{w_{m}\left(\frac{\text{diam } S_{i}}{2}\right)^{m}}_{=\mathcal{L}^{m}(B(0, \frac{1}{2} \text{ diam } S_{i}))},$$
(2)

Figure: Case m = 1: the sum of diameters of smaller balls give a better approximation of the curve's length.

Rectifiable sets

In GMT: Manifolds \rightsquigarrow Rectifiable sets (not necessarily smooth) Smooth maps \rightsquigarrow Lipschitz maps

Definition

A subset *S* of \mathbb{R}^d is:

- *m*-rectifiable, for *m* ≤ *d*, if it is the image of a bounded subset of ℝ^m under a Lipschitz map;
- countably m-rectifiable if it is a countable union of m-rectifiable sets.
- countably (\mathcal{H}^m, m) -rectifiable if there exist countable *m*-rectifiable set containing \mathcal{H}^m -almost all of *S*.

Examples:

- countably 0-rectifiable: countable set.
- 2 \mathbb{R}^d is countably *d*-rectifiable.
- In m-dimensional C^1 submanifold of \mathbb{R}^d is countably m-rectifiable.

[Insert drawing]

æ

Rectifiable measures

Let ρ be a locally finite and regular measure, and $s \in (0,\infty)$.

Limiting density: $\Theta_s(\rho, x) := \lim_{r \downarrow 0} \rho(B(x, r))/(w_s r^s)$

Theorem (Marstrand)

If $\Theta_s(\rho, x)$ exists and is strictly positive and finite for ρ -almost every x, then s is an integer not greater than n.

Theorem (Preiss)

... Moreover, there exists a countably (\mathcal{H}^m, m) -rectifiable Borel set E such that $\rho \ll \mathcal{H}^m|_E$.

In particular, $\rho(\mathbb{R}^d \setminus E) = 0$. Such measures are called **rectifiable**.

Koliander, Pichler, Riegler, and Hlawatsch (2016) studied them from an information-theoretic viewpoint

September 5, 2023

17/31

Proposition

If S is a countably (\mathcal{H}^m, m) -rectifiable subset of \mathbb{R}^d , then

$$S \subset S_0 \cup \bigcup_{i=0}^{\infty} f_i(K_i)$$

where:

- S_0 is \mathcal{H}^m -null,
- $(K_i)_i$ compact subsets of \mathbb{R}^m ,
- $(f_i)_i$ of Lipschitz functions from \mathbb{R}^m to \mathbb{R}^d .

In fact, it also holds that S is contained in the union of an \mathcal{H}^m -null set and countably many C^1 manifolds.

Fact: an *m*-rectifiable measure ν is absolutely continuous with respect to the restricted measure $\mathcal{H}^m|_{E^*}$, where E^* is countably *m*-rectifiable. Call any such E^* a *carrier*.

In the case of discrete continuous mixtures, the sets E_0 and E_1 were carriers.

Lemma

Let S_i be a carrier of an m_i -rectifiable measure ν_i (for i = 1, 2). Then

- S_i has Hausdorff dimension m_i;
- $S_1 \times S_2$ is a carrier of $\nu_1 \otimes \nu_2$, of Hausdorff dimension $m_1 + m_2$. Additionally,

$$\mathcal{H}^{m_1+m_2}|_{\mathcal{S}_1\times\mathcal{S}_2}=\mathcal{H}^{m_1}|_{\mathcal{S}_1}\otimes\mathcal{H}^{m_2}|_{\mathcal{S}^2}.$$

Measure theory and limit laws

Open problems

Stratified measures

Definition (k-stratified measure)

A measure ν on \mathbb{R}^d is *k*-stratified, for $k \in \mathbb{N}^*$, if there are integers $(m_i)_{i=1}^k$ such that $0 \le m_1 < m_2 < ... < m_k \le d$ and ν can be expressed as a sum $\sum_{i=1}^k \nu_i$, where each ν_i is a nonzero m_i -rectifiable measure.

Examples:

- 1-stratified = rectifiable: discrete measure, continuous measure, measure carried by a manifold.
- 2-stratified: discrete-continuous mixtures

Standard form: one can find a sequence $(E_i)_{i=1}^k$ of *disjoint* rectifiable subsets of \mathbb{R}^d such that E_i is *countably* m_i -rectifiable for each i, and $\nu = \sum_{i=1}^k q_i \nu_i$ with ν_i probability measures, $\nu_i \ll \mathcal{H}^{m_i}|_{E_i}$.

When ν probability measure, then $(q_1,...,q_n)$ probability vector.

 $\rho = \sum_{i=1}^{k} q_i \rho_i$ probability measure in standard form. $E_Y = \{1, ..., k\}.$

Then:

$$\rho^{\otimes n} = \sum_{\mathbf{y}=(y_1,\ldots,y_n)\in E_Y^n} q_1^{N(1;\mathbf{y})}\cdots q_k^{N(k;\mathbf{y})}\rho_{y_1}\otimes\cdots\otimes\rho_{y_n}.$$

Each stratum $\Sigma_{\mathbf{y}} = E_{y_1} \times \cdots \times E_{y_n}$ has Hausdorff dimension $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$.

The measure $\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}$ is absolutely continuous w.r.t. $\mu_{y_1} \otimes \cdots \otimes \mu_{y_n}$, which by the result above is the $m(\mathbf{y})$ -Hausdorff measure on $\Sigma_{\mathbf{y}}$.

Asymptotic concentration

Recall: $N(i; \mathbf{y})/n \to q_i$ in probability. The set $A_{\delta'}^{(n)}$ of $\mathbf{y} \in E_Y^n$ such that $|N(i; \mathbf{y})/n - q_i| < \delta'$, for all $i \in E_Y$, concentrates almost all the probability when n is big (strong typicality).

Number of typical strata
$$= \# {\cal A}^{(n)}_{\delta'} pprox \exp(n {\cal H}_\#(q_1,...,q_k))$$
 .

Moreover,

$$\rho^{\otimes n} \approx \rho^{(n)} := \sum_{\mathbf{y} \in A_{\delta'}^{(n)}} q_1^{N(1;\mathbf{y})} \cdots q_k^{N(k;\mathbf{y})} \underbrace{\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}}_{\ll \mathcal{H}^{m(\mathbf{y})}|_{\Sigma_{\mathbf{y}}}}.$$

For $\mathbf{y} \in A_{\delta'}^{(n)}$, it holds that $m(\mathbf{y}) \approx n \sum_{i=1}^{k} q_i m_i$, and that conditional entropy $H(X|Y) := \sum_{i=1}^{k} q_i H_{\mu_i}(\rho_i)$ is such that

$$\underbrace{\mu^{\otimes n}}_{\mathcal{H}^{m(\mathbf{y})}}(W^{(n)}_{\delta}(\rho)\cap\Sigma_{\mathbf{y}})\approx \exp(nH(X|Y)).$$

• $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.

September 5, 2023 24 / 31

イロト イヨト イヨト -

3

- $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'_n}^{(n)}$ strongly typical sequences with $\delta'_n = C_{(q_1,...,q_n)} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.

- $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'_n}^{(n)}$ strongly typical sequences with $\delta'_n = C_{(q_1,...,q_n)} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $T^{(n)}_{\delta,\delta'_n}(\mathbf{y}) = W^{(n)}_{\delta} \cap \Sigma_{\mathbf{y}}$ for $\mathbf{y} \in A^{(n)}_{\delta'_n}$, doubly typical sequences.

- $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'_n}^{(n)}$ strongly typical sequences with $\delta'_n = C_{(q_1,...,q_n)} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $T^{(n)}_{\delta,\delta'_n}(\mathbf{y}) = W^{(n)}_{\delta} \cap \Sigma_{\mathbf{y}}$ for $\mathbf{y} \in A^{(n)}_{\delta'_n}$, doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $T_{\delta, \delta'_n}^{(n)}(\mathbf{y})$.

- $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'_n}^{(n)}$ strongly typical sequences with $\delta'_n = C_{(q_1,...,q_n)} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}^{(n)}_{\delta,\delta'_n}(\mathbf{y}) = W^{(n)}_{\delta} \cap \Sigma_{\mathbf{y}}$ for $\mathbf{y} \in \mathcal{A}^{(n)}_{\delta'_n}$, doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $T_{\delta, \delta'_n}^{(n)}(\mathbf{y})$.

Theorem

For any $\varepsilon > 0$ and $\delta > 0$, if n big enough, then $d_{TV}(\rho^{\otimes n}, \rho^{(n)}) < \varepsilon$ where $\rho_{\delta,\delta'_n}^{(n)} = \sum_{\mathbf{y} \in A_{\delta'_n}^{(n)}} \rho^{\otimes n} |_{\mathcal{T}_{\delta,\delta'_n}^{(n)}}(\mathbf{y}).$

- $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'_n}^{(n)}$ strongly typical sequences with $\delta'_n = C_{(q_1,...,q_n)} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $\mathcal{T}^{(n)}_{\delta,\delta'_n}(\mathbf{y}) = W^{(n)}_{\delta} \cap \Sigma_{\mathbf{y}}$ for $\mathbf{y} \in \mathcal{A}^{(n)}_{\delta'_n}$, doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $T_{\delta, \delta'_n}^{(n)}(\mathbf{y})$.

Theorem

For any $\varepsilon > 0$ and $\delta > 0$, if n big enough, then $d_{TV}(\rho^{\otimes n}, \rho^{(n)}) < \varepsilon$ where $\rho_{\delta,\delta'_n}^{(n)} = \sum_{\mathbf{y} \in A_{\delta'_n}^{(n)}} \rho^{\otimes n}|_{\mathcal{T}_{\delta,\delta'_n}^{(n)}(\mathbf{y})}$. Moreover, $\rho^{(n)}$ is stratified: a sum of *m*-rectifiable measures for *m* in $[n\mathbb{E}(D) - n^{1/2+\xi}, n\mathbb{E}(D) + n^{1/2+\xi}]$. where $\mathbb{E}(D) = \sum_{i=1}^{k} q_i m_i$.

- $\rho = \sum_{i=1}^{k} q_i \rho_i$ stratified measure in standard form.
- $A_{\delta'_n}^{(n)}$ strongly typical sequences with $\delta'_n = C_{(q_1,...,q_n)} n^{-1/2+\xi}$, with $\xi \in (0, 1/2)$.
- $T^{(n)}_{\delta,\delta'_n}(\mathbf{y}) = W^{(n)}_{\delta} \cap \Sigma_{\mathbf{y}}$ for $\mathbf{y} \in A^{(n)}_{\delta'_n}$, doubly typical sequences.
- $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$ dimension of $\Sigma_{\mathbf{y}}$ and $\mathcal{T}_{\delta,\delta'_n}^{(n)}(\mathbf{y})$.

Theorem

For any $\varepsilon > 0$ and $\delta > 0$, if n big enough, then $d_{TV}(\rho^{\otimes n}, \rho^{(n)}) < \varepsilon$ where $\rho_{\delta,\delta_n'}^{(n)} = \sum_{\mathbf{y} \in A_{\delta_n'}^{(n)}} \rho^{\otimes n}|_{\mathcal{T}_{\delta,\delta_n'}^{(n)}}(\mathbf{y}).$ Moreover, $\rho^{(n)}$ is stratified: a sum of *m*-rectifiable measures for *m* in $[n\mathbb{E}(D) - n^{1/2+\xi}, n\mathbb{E}(D) + n^{1/2+\xi}]$. where $\mathbb{E}(D) = \sum_{i=1}^{k} q_i m_i$. Finally, • For any $\mathbf{y} \in A_{\delta'}^{(n)}$, $\frac{1}{n} \ln \mathcal{H}^{m(\mathbf{y})}(\mathcal{T}_{\delta\delta'}^{(n)}(\mathbf{y})) \leq H(X|Y) + (\delta + \delta'_n)$. **2** For any $\varepsilon > 0$, the set $B_{\varepsilon}^{(n)}$ of $\mathbf{y} \in \subset A_{\delta'}^{(n)}$ such that $\frac{1}{n} \ln \mathcal{H}^{m(\mathbf{y})}(\mathcal{T}^{(n)}_{\delta \delta'}(\mathbf{y})) > H(X|Y) - \varepsilon + (\delta + \delta'_n), \text{ satisfies}$ $\limsup_{\delta \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \ln |B_{\varepsilon}^{(n)}| = H(Y).$

Back to Renyi: Dimension

Verdú and Wu proved:

$$\dim_{I} \rho = \lim_{\varepsilon \to 0} \mathbb{E}_{\rho} \left(\frac{\ln \rho(B(X, \varepsilon))}{\ln \varepsilon} \right), \tag{3}$$

where B denotes an Euclidean ball.

Preiss' theorem: a measure ρ is *m*-rectifiable if and only if the density $\Theta_m(\rho, x)$ exists and is finite and nonzero for ρ -almost every x. In particular,

$$\lim_{\varepsilon \to 0} \frac{\ln \rho(B(x,\varepsilon))}{\ln \varepsilon} = m \quad \rho\text{-a.e.}$$

Therefore dim₁ $\rho = m$, provided one can exchange the limit and the expectation in (3). We say ρ is dimensional regular.

For a stratified measure $\rho = \sum_{i=1}^{k} q_i \rho_i$, with ρ_i being m_i -rectifiable and dimensional regular, Renyi's information dimension is $D = \sum_{i=1}^{k} q_i m_i$.

25/31

Rectifiable entropy differs from Renyi's dimensional entropy

Theorem (Perez, Csiszar, ...)

() μ be a σ -finite measure, ρ proba., $\rho \ll \mu$. Then

$$\frac{\mathrm{d}\rho}{\mathrm{d}\mu} = \lim_{n} \sum_{\substack{\mathbf{j}\in\mathbb{Z}^d\\\mu(C_{2^n,\mathbf{j}})>0}} \frac{\rho(C_{2^n,\mathbf{j}})}{\mu(C_{2^n,\mathbf{j}})} \chi_{C_{2^n,\mathbf{j}}}$$

almost surely and in L^1 .

• $\rho \ll \mathcal{H}^m|_E$ for some (\mathcal{H}^m, m) -rectifiable Borel set E. Suppose $\mu := \mathcal{H}^m|_E$ is a finite measure and that $\frac{d\rho}{d\mu}$ is bounded. Then

$$H_{\mu}(\rho) = \lim_{n} \left(H_{\#}(\rho_{2^{n}}) + \sum_{\substack{\mathbf{j} \in \mathbb{Z}^{d} \\ p_{2^{n},\mathbf{j}} > 0}} p_{2^{n},\mathbf{j}} \ln \mu(C_{2^{n},\mathbf{j}}) \right).$$
(5)

(4)

Measure theory and limit laws

September 5, 2023 27 / 31

Rate-distortion function (RDF)

Given a probability measure ρ on \mathbb{R}^d , the (Euclidean, quadratic) RDF maps $D \in (0, \infty)$ to

$$R_{\rho}(D) = \inf_{\{K(y|x): \int ||x-y||_2^2 K(y|x), d\rho(x) < D\}} I(\mathbf{X}, \mathbf{Y}),$$
(6)

where $\mathbf{X} \sim \rho$, $K(\mathbf{y}|\mathbf{x})$ is a stochastic transition kernel that gives the distribution of $\mathbf{Y} \in \mathbb{R}^d$, and $I(\mathbf{X}, \mathbf{Y})$ is the mutual information introduced by Kolmogorov (via finite partitions).

Classical result: when $\mathbf{X}\sim\rho$ on \mathbb{R}^d has a sufficiently smooth density f ,

$$R_{
ho}(D) \sim -rac{k}{2}\log(2\pi eD) - \int f \ln f \,\mathrm{d}x$$

as $D \rightarrow 0$.

Dembo and Kawabata: $\lim_{D\to 0} \frac{R_{\rho}(D)}{-\frac{1}{2}\log D} = \dim_{I}(\rho).$

Charusaie *et al.*: define the **dimensional-rate bias** $b(\rho)$ as

$$\lim_{D \to 0} \left(R_{\rho}(D) - \underbrace{\left(-\frac{\dim_{I}(\rho)}{2} \log D + f(\dim_{I} \rho) \right)}_{=H_{\mathcal{L}^{k}}(\mathbf{X}) \text{ where } \mathbf{X} \sim \mathcal{N}_{r}(0, \alpha I) \text{ and } \mathbb{E}(\|\mathbf{X}\|^{2}) = D \right)}_{=D}$$

when it exists.

Analogous to Renyi's definition of the dimensional entropy.

They proved that when ρ is affinely singular (stratified, with each E_i a union of affine m_i -dimensional spaces), then $b(\rho) = H_{\mu}(\rho)$. In this case μ is a sum of Lebesgue measures.

How about general stratified measures?

How to device a statistical test to establish that a certain measure from which we can draw samples is rectifiable? And stratified?

Could we use that if ρ is *m*-rectifiable then

$$\lim_{\varepsilon \to 0} \frac{\ln \rho(B(x,\varepsilon))}{\ln \varepsilon} = m \quad \rho\text{-a.e.}?$$

Conclusion

- A measure-theoretic statement of the AEP for memoryless sources with general alphabets gives a unifying picture of the asymptotic behavior of discrete, continuous, discrete-continuous, rectifiable and stratified sources (measures).
- Geometric measure theory provides a very robust and general language to talk about measures that "live" on a geometric space.
- Typical realizations of a stratified measure concentrate on strata of a few typical dimensions, around a mean value that "coincides" with its information dimension.
- The entropy of a stratified measure satisfies a chain rule whose conditional term quantifies the typical realizations in each typical stratum.
- The standard entropy, defined via density, in general differs from Renyi's *d*-dimensional entropy.
- Open problems concerning: information dimension of rectifiable measures, asymptotic behavior of RDF, statistical test for rectifiability.