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Typicality

A random binary word X = (X1, ..., Xj), with i.i.d. symbols, X; ~ Ber(q),
is expected to have ng ones and n(1 — q) zeroes.

There are roughly (n"q) ~ e"M(@) of such words, and each has probability
~ e*”H(Q)

Entropy: H(q) := —qglng— (1 —q)In(1 — q).

More formally, one might introduce a set of “typical realizations” of X in
two ways:

e Weak or entropic: Sequences x = (x1, ..., x,) € {0,1}" such that
|—=LInP(Xy = x1) - P(Xn = xn) — H(q)| < 6.
e Strong (when 0 < g < 1): Sequences x € {0,1}" such that
1LN(L;x) — g| < 6.
Law of large numbers: —1 3"  P(X; = x;) — H(q) and 1N(1;x) — g in
probability.
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Measure theory

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit
theorems.

Fundamental ingredients:

@ Set E of “elementary outcomes”.
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Measure theory

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize probability and formalize limit
theorems.

Fundamental ingredients:

@ Set E of “elementary outcomes”.
@ o-algebra: distinguished collection & of subsets of E, called “events”.
© Measure: a function p : € — [0, 00] such that p(0) = 0 and

(72 A) = 22720 m(A):;
the measure is o-finite is £ can be partitioned into countably many
events of finite y-measure.

O Probability measure: a measure p such that p(E) = 1.

© Absolute continuity p < pu: there is a real-valued integrable
function f = g—z such that p(A) = [, fdu for any A € €.
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Law of Large numbers and AEP

Setting: (Ex, B, ) measure space; p o-finite; p proba; p < p; f = %_
Entropy: H,(p) :=E, (— In (SLZ) =— [ fInfdpu.

A sequence (Xi, ..., X,) of i.i.d. realizations of p has law p®" (product)
and density f®"(xq,...,xn) = f(x1) -+ f(xn).
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Law of Large numbers and AEP

Setting: (Ex, B, ) measure space; p o-finite; p proba; p < p; f = du

Entropy: Hy(p) :=E, (~In2) = — [z fInfdp.

A sequence (Xi, ..., X,) of i.i.d. realizations of p has law p®" (product)
and density f®"(xq,...,xn) = f(x1) -+ f(xn).

Proposition (AEP)

Suppose that the entropy H,(p) < co. For every § >0,

wm .= {x €Ep ‘—% In F27(x) — HM(p)‘ < 5}. (1)

Then, for every € > 0, provided n big enough,
(1] p®”(W5(")) >1—¢ and
[2) (1 _ g)e”(HM(p)_‘s) < H@n(W(S(n)) < en(H,,(p)—HS)‘

V.
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Examples AEP

Q E finite,
@ counting measure,
f= g—p probability mass function,
Hu(p) = = > jce f(i) In £(i) discrete entropy,
u®" counting measure too.
Therefore: #Wé(") ~exp(—n) g f(i)Inf(i)).
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Examples AEP

Q E finite,
( counting measure,
f= g—p probability mass function,
Hu(p) = = > jce f(i) In £(i) discrete entropy,
pu®" counting measure too.
Therefore: #Wé(") ~exp(—n) g f(i)Inf(i)).
@ E=R",
p = L9 Lebesgue measure (d-volume),
f= gp probability density function,
u(P — Jg fInf differential entropy,
= £"¥, the nd-dimensional volume.
Therefore: voI(W(s(n)) ~ exp(—n [¢ flogf).
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Discrete-continuous mixture

Consider a probability measure p = gp1 + (1 — q)po on Ex = RY, where:

o q e [0’ 1]r
Q@ p1 < p1 = L9, the Lebesgue measure.

© po < o, where g is the counting measure on a countable set
S cRY

Remark: p < pu1 + po.

Hu(p) = Hy(q) + qHp, (p1) + (1 — q)Hye(po)-
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Renyi's dimension and entropy

Given an arbitrary probability measure p on R9, Renyi (1959) first
discretized it through a measurable partition of R? into cubes with vertices
in Z9/n, getting laws p, with countable support.

If
Hy(pn) = DInn+ h+o(1)

for some D, h € R, Renyi calls D the information dimension and h the
D-dimensional entropy of the measure p.

When p = gp1 + (1 — q)po is a discrete continuous mixture:

D=qd and h=Hy(q)+qH,u (o) + (1 — Q)H,(00).
Topological meaning of D?
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A first asymptotic analysis

Set Eg = S and E; = RY\ S. Remark pilg, = pa and pilg, = p1.

Partition EJ = (R?)" into strata E,, x - - - E,,, for any
y = (V1,--,¥n) € Ey, where Ey = {0,1}.

Then

P2 = Z gV (1 — q)" NIy © ... @ p,,.
yEEY
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A first asymptotic analysis

Set Eg = S and E; = RY\ S. Remark pilg, = pa and pilg, = p1.

Partition EJ = (R?)" into strata E,, x - - - E,,, for any
y = (V1,--,¥n) € Ey, where Ey = {0,1}.

Then

P2 = Z gV (1 — q)" NIy © ... @ p,,.
yEEY

See y as realization of (Y1, ..., Y,) ~ Ber(q)®". Then N(1;y) ~ Bin(n,q),
which entails concentration of probability around its mean: for y strongly
typical, N(1;y) =~ nq.

Consequently, a corresponding “typical stratum” E,, x ---E, that
“carries” py, ® --- ® py, has roughly dimension nqd.
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Meaning of the chain rule

Recall
H.(p) = Hy(q) + qHp, (p1) + (1 — q)Hyo(po)-

What is the meaning of this expression in terms of the AEP?
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Meaning of the chain rule

Recall
H.(p) = Hy(q) + qHp, (p1) + (1 — q)Hyo(po)-

What is the meaning of this expression in terms of the AEP?

It holds that
eHu(p) — e"Hy(a,1-q) e”(qHu1(Pl)"‘(l_Q)Huo(PO))’
SN—— ~~
~u®n-volume of W(n(p) ~# of typical y ~volume of typical realizations

—=#typical strata in each stratum
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A problem

Let p be a probability measure on RY.

If there is an m-dimensional manifold E, with m < d, such that
p(RY\ E) =0, then p &« L. Hence the entropy Hzm(p) is not defined.
But p my have a density with respect to the natural m-dimensional volume.
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A problem

Let p be a probability measure on RY.

If there is an m-dimensional manifold E, with m < d, such that
p(RY\ E) =0, then p &« L. Hence the entropy Hzm(p) is not defined.
But p my have a density with respect to the natural m-dimensional volume.

Moreover, if p. — p weakly as € — 0, where p. is a noisy version of p, it
holds that Hym(p:) = —o0 as € — 0.

This is consistent with the volume estimates presented above: the typical
realizations of p®” live in a space with vanishing £"?-volume.
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m-Hausdorff measure

The m-Hausdorff measure gives a notion of m-dimensional volume:

diam S;\ "
mA) = i inf m | 2
H(A) 5210 {SISI'EN ZW < 2 > ’ )
AcU; Si, diam S;<5 1€/

zgm(B(O,% diam S;))

Figure: Case m = 1: the sum of diameters of smaller balls give a better
approximation of the curve's length.
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Rectifiable sets

In GMT: Manifolds ~~ Rectifiable sets (not necessarily smooth)
Smooth maps ~» Lipschitz maps

A subset S of RY is:

e m-rectifiable, for m < d, if it is the image of a bounded subset of R
under a Lipschitz map;

@ countably m-rectifiable if it is a countable union of m-rectifiable sets.

e countably (H™, m)-rectifiable if there exist countable m-rectifiable set
containing H-almost all of S.

v

Examples:

@ countably O-rectifiable: countable set.
@ R is countably d-rectifiable.
© An m-dimensional C! submanifold of R? is countably m-rectifiable.
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Another example: Manifolds

[Insert drawing]
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Rectifiable measures

Let p be a locally finite and regular measure, and s € (0, c0)

Limiting density: ©4(p, x) := lim, o p(B(x,r))/(wsr®)

Theorem (Marstrand)

If ©s(p, x) exists and is strictly positive and finite for p-almost every x,
then s is an integer not greater than n.

Theorem (Preiss)

. Moreover, there exists a countably (H™, m)-rectifiable Borel set E such
that p < H™|E.

v

In particular, p(R?\ E) = 0. Such measures are called rectifiable.

Koliander, Pichler, Riegler, and Hlawatsch (2016) studied them from an
information-theoretic viewpoint
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Proposition

If S is a countably (1™, m)-rectifiable subset of RY, then

o0
s c SoulJfi(ki)
i=0
where:
@ Sg is H™-null,
o (K;); compact subsets of R,
e (f;)i of Lipschitz functions from R™ to R,

In fact, it also holds that S is contained in the union of an H™-null set
and countably many C! manifolds.
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Carriers

Fact: an m-rectifiable measure v is absolutely continuous with respect to
the restricted measure H™|g«, where E* is countably m-rectifiable. Call
any such E* a carrier.

In the case of discrete continuous mixtures, the sets Fy and E; were
carriers.

Let S; be a carrier of an mj-rectifiable measure v; (for i =1,2). Then
@ S; has Hausdorff dimension m;;

@ 51 X S, is a carrier of 1 ® v», of Hausdorff dimension my + ms.
Additionally,

H™E™|5 5, = H™s, @ H™|s2.
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Stratified measures

Definition (k-stratified measure)

A measure v on R? is k-stratified, for k € N*, if there are integers (m;)%_;

such that 0 < m; < my < ... < m < d and v can be expressed as a sum
Zf—‘zl vj, where each v; is a nonzero mj-rectifiable measure.

Examples:

o 1-stratified = rectifiable: discrete measure, continuous measure,
measure carried by a manifold.

@ 2-stratified: discrete-continuous mixtures

Standard form: one can find a sequence (E;)%_; of disjoint rectifiable
subsets of R? such that E; is countably mj-rectifiable for each i, and
V= Zf-‘zl qgivi with v; probability measures, v; < H™i|g..

When v probability measure, then (g1, ..., gn) probability vector.



p= Zf-;l gipi probability measure in standard form.
Ey ={1,...,k}.

Then:

N(1; N(k;
= Y g g,
y=(¥1,---.yn)EE}

Each stratum ¥y = E,, x --- x E,, has Hausdorff dimension

m(y) = > iy my,.

The measure p,, ® --- @ p,, is absolutely continuous w.r.t. p, ®@--- @ py,,
which by the result above is the m(y)-Hausdorff measure on Xy.
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Asymptotic concentration

Recall: N(i;y)/n — g; in probability.
The set Agf’) of y € EJ such that |[N(i;y)/n— qi| < ¢, forall i € Ey,
concentrates almost all the probability when n is big (strong typicality).

Number of typical strata = #A((;) ~ exp(nHy(q1, .., qk)) -

Moreover,

N(1; N k;
——
YEA <<Hm(>')|):y

Fory e A((;f'), it holds that m(y) ~ nzllle qimj,

and that conditional entropy H(X|Y) := Zf-;l qiHy;(pi) is such that
pE" (W (p) N Ey) =~ exp(nH(X|Y)).
~

Hm(y)
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e p= Z:I'(:l gipi stratified measure in standard form.
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e p= Z:I'(:l gipi stratified measure in standard form.
° A((;Z) strongly typical sequences with §], = Car,.. n~ Y2+ with

£€(0,1/2).

-aqn)
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e p= Z:I'(:l gipi stratified measure in standard form.

n~1/2+€ \with

° A((;) strongly typical sequences with §], = Clar,sqn)

£€(0,1/2).
° Ta('g(y) = Wé(") Ny forye A((;), doubly typical sequences.
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°p= Z,I-;l gipi stratified measure in standard form.

° A‘(SZ) strongly typical sequences with §], = G n—1/2+€ \ith
€€(0,1/2).

° T§7§?n(y) = Wé(") Ny forye A((;), doubly typical sequences.

e m(y) = >/, my, dimension of X, and Té(’g( ).

q17~--’qn)
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e p= fozl gipi stratified measure in standard form.

° A((;Z) strongly typical sequences with §], = o n~ Y2+ with
§€(0,1/2).

° T(S('Q(y) = Wg(") Ny forye A((;f’), doubly typical sequences.

e m(y) = >/, my, dimension of X, and Té(’(;z( ).

For any e > 0 and § > 0, if n big enough, then d-,-\/(p®”,p(”)) < € where

(n) _ Qn
p576:/1 ZYGAE;’Z”) P | Té!";:, (y)

q1,--Gn)

v

- = = = >yt
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e p= fozl gipi stratified measure in standard form.

° A((;) strongly typical sequences with §], = C(qhm’qn)n_l/”g, with
§€(0,1/2).

° T(S('Q(y) = Wg(") Ny forye A((;f’), doubly typical sequences.

e m(y) = >/, my, dimension of X, and T(;('(Q( ).

For any e > 0 and § > 0, if n big enough, then d-,-\/(p®”,p(”)) < € where

(n) ®Xn M (n) o 070
= 7 n . Moreover, is stratified: a sum of
Pagl, = Lyeal )P | 7 3) p

m-rectifiable measures for m in [nE(D) — n'/2*¢ nE(D) + n'/?*¢]. where
E(D) = X1, qimi.

v

—_ —_ = = >yt
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e p= fozl gipi stratified measure in standard form.

° A((;) strongly typical sequences with §], = C(qhm’qn)n_l/zﬁ, with
§€(0,1/2).

° T(S('Q(y) = Wg(") Ny forye Agf’), doubly typical sequences.

e m(y) = >/, my, dimension of X, and T(;('Q( ).

For any e > 0 and § > 0, if n big enough, then d-,-\/(p®”,p(”)) < € where

(n) ®Xn M (n) o 070
= 7 n . Moreover, is stratified: a sum of
Pagl, = Lyeal )P | 7 3) p

m-rectifiable measures for m in [nE(D) — n'/2*¢ nE(D) + n'/?*¢]. where
E(D) = Zf‘ 1 Gim;. Finally,

© Foranyy € A5, LinH"O)(T{D (y)) < H(X|Y) + (8 + 8)).
@ For any € > 0, the set B( ") ofy eC Ag,) such that
Lingm (T (y)) > H(X] Y) — e+ (6 + ), satisfies

lim sups_,q+ limsup,_,o X In |B | = H(Y).
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Back to Renyi: Dimension

Verdi and Wu proved:

dim;p=1ImE, ('”p(B(X’E))> 7
e—0

Ine

where B denotes an Euclidean ball.

Preiss’ theorem: a measure p is m-rectifiable if and only if the density
Om(p, x) exists and is finite and nonzero for p-almost every x. In

particular,
o Inp(B(x.<))

=m p-a.e.
e—0 Ine

Therefore dim; p = m, provided one can exchange the limit and the
expectation in (3). We say p is dimensional regular.

For a stratified measure p = fozl gipi, with p; being mj-rectifiable and
dimensional regular, Renyi’'s information dimension is D = Zf-;l qimi.



Rectifiable entropy differs from Renyi's dimensional entropy

Theorem (Perez, Csiszar, ...)

©Q . be a o-finite measure, p proba., p < p. Then

dp . p(Canj)
— = lim =N Con (4)
o gz:d p(Cong) ™"

p(Can 5)>0

almost surely and in L.

Q@ p < H™|g for some (H™, m)-rectifiable Borel set E. Suppose
p = H™|g is a finite measure and that S—Z is bounded. Then

Hu(p) = lim | Hy(p2r) + Y parjInp(Cong) | - (5)

jezd
pan ;>0
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@ Open problems
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Rate-distortion function (RDF)

Given a probability measure p on RY, the (Euclidean, quadratic) RDF
maps D € (0,00) to

R,(D) = inf 1(X,Y), (6)
{K(yx): [llx=ylI3 K(v[x),dp(x)<D}

where X ~ p, K(y|x) is a stochastic transition kernel that gives the
distribution of Y € R9, and /(X,Y) is the mutual information introduced
by Kolmogorov (via finite partitions).

Classical result: when X ~ p on R? has a sufficiently smooth density f,
k
R,(D) ~ —3 log(2meD) — / finfdx

as D — 0.

Dembo and Kawabata: limp_,g % = dim;(p).
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More on RDF

Charusaie et al.: define the dimensional-rate bias b(p) as

Iim | Ry(D) - <_d'm2’(”) log D + (dim; p)) (7)

=H .1 (X) where X~A(0,a/) and E(||X|[*)=D
when it exists.
Analogous to Renyi's definition of the dimensional entropy.

They proved that when p is affinely singular (stratified, with each E; a
union of affine mj-dimensional spaces), then b(p) = H,(p). In this case x
is a sum of Lebesgue measures.

How about general stratified measures?
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Statistical estimation

How to device a statistical test to establish that a certain measure from
which we can draw samples is rectifiable? And stratified?

Could we use that if p is m-rectifiable then

o Inp(B(x.<))

=m p-a.e?
e—0 Ine P
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Conclusion

@ A measure-theoretic statement of the AEP for memoryless sources
with general alphabets gives a unifying picture of the asymptotic
behavior of discrete, continuous, discrete-continuous, rectifiable and
stratified sources (measures).

@ Geometric measure theory provides a very robust and general
language to talk about measures that “live” on a geometric space.

@ Typical realizations of a stratified measure concentrate on strata of a
few typical dimensions, around a mean value that “coincides” with its
information dimension.

@ The entropy of a stratified measure satisfies a chain rule whose
conditional term quantifies the typical realizations in each typical
stratum.

@ The standard entropy, defined via density, in general differs from
Renyi's d-dimensional entropy.

@ Open problems concerning: information dimension of rectifiable
measures, asymptotic behavior of RDF, statistical test for rectifiability.
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