On the entropy of rectifiable and stratified measures

Juan Pablo Vigneaux

Department of Mathematics California Institute of Technology Pasadena, CA, USA vigneaux@caltech.edu

GSI 2023 - Information Theory and Statistics

Saint-Malo, August 30th, 2023

Image: Image:

э

Measure theory

Introduced by Lebesgue, Borel, etc. to understand integration.

Kolmogorov (1933) used it to axiomatize *probability* and formalize limit theorems.

Fundamental ingredients:

- Set E of "elementary outcomes".
- **③** σ -algebra: collection \mathfrak{E} of subsets of E (called "events"), closed under complementation and countable unions, with $\emptyset \in \mathfrak{E}$.

Omeasure: a function µ : € → [0,∞] such that µ(∅) = 0 and µ(□_{i=1}[∞] A_i) = ∑_{i=1}[∞] µ(A_i); the measure is σ-finite is E can be partitioned into countably many pieces of finite µ-measure.

- **9 Probability measure**: a measure ρ such that $\rho(E) = 1$.
- Solute continuity ρ ≪ μ: there is a real-valued integrable function f ≡ dρ/dμ such that ρ(A) = ∫_A f dμ for any A ∈ 𝔅.

Setting: (E_X, \mathfrak{B}, μ) measure space, $\mu \sigma$ -finite; ρ proba; $\rho \ll \mu$ with density f.

Proposition (AEP)

Suppose that the entropy $H_{\mu}(\rho) := -\int_{E} f \ln f \, d\mu = \mathbb{E}_{\rho} \left(-\ln \frac{d\rho}{d\mu} \right) < \infty$. Define: for every $\delta > 0$,

$$W_{\delta}^{(n)} = \left\{ \left(x_1, ..., x_n \right) \in E_X^n : \left| -\frac{1}{n} \ln \prod_{i=1}^n f(x_i) - H_{\mu}(\rho) \right| < \delta \right\}.$$
(1)

Then, for every $\varepsilon > 0$, provided n big enough, • $\rho^{\otimes n}(W_{\delta}^{(n)}(\rho;\mu)) > 1 - \varepsilon$ and • $(1-\varepsilon)\exp\{n(H_{\mu}(\rho)-\delta)\} \le \mu^{\otimes n}(W_{\delta}^{(n)}(\rho;\mu)) \le \exp\{n(H_{\mu}(\rho)+\delta)\}.$

E finite,

$$\begin{split} & \mu \text{ counting measure,} \\ & f = \frac{\mathrm{d}\rho}{\mathrm{d}\mu} \text{ probability mass function,} \\ & H_{\mu}(\rho) = -\sum_{i \in E} f(i) \ln f(i) \text{ discrete entropy,} \\ & \mu^{\otimes n} \text{ counting measure too.} \\ & \text{Therefore: } \# W_{\delta}^{(n)} \approx \exp(-n\sum_{i \in E} f(i) \ln f(i)). \end{split}$$

 E finite, μ counting measure, $f = \frac{d\rho}{d\mu}$ probability mass function, $H_{\mu}(\rho) = -\sum_{i \in F} f(i) \ln f(i)$ discrete entropy, $\mu^{\otimes n}$ counting measure too. Therefore: $\#W_{s}^{(n)} \approx \exp(-n\sum_{i \in F} f(i) \ln f(i)).$ $E = \mathbb{R}^d.$ $\mu = \mathcal{L}^d$ Lebesgue measure (*d*-volume), $f = \frac{d\rho}{d\mu}$ probability density function, $H_{\mu}(\rho) = -\int_{F} f \ln f$ differential entropy, $\nu^{\otimes n} = \mathcal{L}^{nd}$, the *nd*-dimensional volume. Therefore: vol $(W_{\delta}^{(n)}) \approx \exp(-n \int_{F} f \log f)$.

Consider a probability measure $\rho = q\rho_1 + (1-q)\rho_0$ on $E_X = \mathbb{R}^d$, where:

- **1** $q \in [0, 1]$,
- 2 $\rho_1 \ll \mathcal{L}^d$, the Lebesgue measure.
- ● $\rho_0 \ll \mu_0$, where μ_0 is the counting measure on a countable set $S \subset \mathbb{R}^d$.

Remark: $\rho \ll \mu_1 + \mu_0$.

Lemma

$$H_{\mu}(\rho) = H_{\#}(q) + qH_{\mu_1}(\rho_1) + (1-q)H_{\mu_0}(\rho_0).$$

What is the meaning of this expression in terms of the AEP?

A first asymptotic analysis

Set
$$E_0 = S$$
 and $E_1 = \mathbb{R}^d \setminus S$. Remark $\rho|_{E_1} = \rho$.

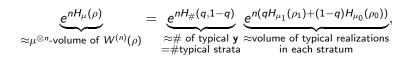
Partition
$$E_X^n = (\mathbb{R}^d)^n$$
 into strata $E_{y_1} \times \cdots \in E_{y_n}$, for any $\mathbf{y} = (y_1, ..., y_n) \in E_Y^n$, where $E_Y = \{0, 1\}$.

Then

$$ho^{\otimes n} = \sum_{\mathbf{y}\in E_Y^n} q^{N(1;\mathbf{y})} (1-q)^{n-N(1;\mathbf{y})}
ho_{y_1} \otimes \cdots \otimes
ho_{y_n}.$$

See **y** as realization of $(Y_1, ..., Y_n) \sim Bin(n, q)$, which entails concentration of probability around its mean: for **y** "typical", $N(1; \mathbf{y}) \approx nq$.

A corresponding "typical stratum" $E_{y_1} \times \cdots \otimes E_{y_n}$ that supports $\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}$ has roughly dimension *nqd*.



3 1 4 3 1

Image: A matrix and a matrix

Given an arbitrary probability measure ρ on \mathbb{R}^d , Renyi (1959) first discretized it through a measurable partition of \mathbb{R}^d into cubes with vertices in \mathbb{Z}^d/n , getting laws ρ_n with countable support.

If $H_{\#}(\rho_n) = D \ln n + h + o(1)$ for some $D, h \in \mathbb{R}$, Renyi calls D the *information dimension* and h the D-dimensional entropy of the measure ρ .

When $\rho = q\rho_1 + (1-q)\rho_0$ is a discrete continuous mixture, D = qd and $h = H_{\#}(q) + qH_{\mu_1}(\rho_1) + (1-q)H_{\mu_0}(\rho_0)$.

∃ → August 30, 2023 10/18

э

m-Hausdorff measure

It gives a notion of *m*-dimensional volume:

$$\mathcal{H}^{m}(A) = \lim_{\delta \to 0} \inf_{\substack{\{S_i\}_{i \in \mathbb{N}} \\ A \subset \bigcup_i S_i, \text{ diam } S_i < \delta}} \sum_{i \in I} w_m \left(\frac{\operatorname{diam}(S_i)}{2}\right)^m, \quad (2)$$

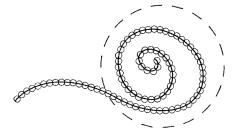


Figure: Case m = 1: the sum of diameters of smaller balls give a better approximation of the curve's length.

Rectifiable sets

In GMT: Manifolds \rightsquigarrow Rectifiable sets (not necessarily smooth) Smooth maps \rightsquigarrow Lipschitz maps

Definition

A subset *S* of \mathbb{R}^d is:

- *m*-rectifiable, for *m* ≤ *d*, if it is the image of a bounded subset of ℝ^m under a Lipschitz map;
- countably m-rectifiable if it is a countable union of m-rectifiable sets.
- countably (\mathcal{H}^m, m) -rectifiable if there exist countable *m*-rectifiable set containing \mathcal{H}^m -almost all of *S*.

Examples:

- countably 0-rectifiable: countable set.
- 2 \mathbb{R}^d is countably *d*-rectifiable.
- **③** An *m*-dimensional C^1 submanifold of \mathbb{R}^d is countably *m*-rectifiable.

Rectifiable measures

Let ρ be a locally finite and regular measure and s a nonnegative real number.

Theorem (Marstrand)

If the limiting density $\Theta_s(\rho, x) := \lim_{r \downarrow 0} \rho(B(x, r))/(w_s r^s)$ exists and is strictly positive and finite for ρ -almost every x, then s is an integer not greater than n.

Later Preiss proved that such a measure is also *s*-rectifiable in the following sense.

Definition

A measure ν on \mathbb{R}^d is called *m*-rectifiable if $\nu \ll \mathcal{H}^m$ and there exists a countably (\mathcal{H}^m, m) -rectifiable Borel set *E* such that $\nu(\mathbb{R}^d \setminus E) = 0$.

Koliander, Pichler, Riegler, and Hlawatsch (2016) studied them from an information-theoretic viewpoint Fact: an *m*-rectifiable measure ν is absolutely continuous with respect to the restricted measure $\mathcal{H}^m|_{E^*}$, where E^* is countably *m*-rectifiable. Call any such E^* a *carrier*.

In the case of discrete continuous mixtures, the sets E_0 and E_1 were carriers.

Lemma

Let S_i be a carrier of an m_i -rectifiable measure ν_i (for i = 1, 2). Then

- S_i has Hausdorff dimension m_i;
- $S_1 \times S_2$ is a carrier of $\nu_1 \otimes \nu_2$, of Hausdorff dimension $m_1 + m_2$. Additionally,

$$\mathcal{H}^{m_1+m_2}|_{\mathcal{S}_1\times\mathcal{S}_2}=\mathcal{H}^{m_1}|_{\mathcal{S}_1}\otimes\mathcal{H}^{m_2}|_{\mathcal{S}^2}.$$

∃ → August 30, 2023 15 / 18

< A[™]

э

Definition (k-stratified measure)

A measure ν on \mathbb{R}^d is *k*-stratified, for $k \in \mathbb{N}^*$, if there are integers $(m_i)_{i=1}^k$ such that $0 \le m_1 < m_2 < ... < m_k \le d$ and ν can be expressed as a sum $\sum_{i=1}^k \nu_i$, where each ν_i is a nonzero m_i -rectifiable measure.

Examples:

- 1-stratified = rectifiable: discrete measure, continuous measure, measure carried by a manifold.
- 2-stratified: discrete-continuous mixtures

Standard form: one can find a sequence $(E_i)_{i=1}^k$ of *disjoint* rectifiable subsets of \mathbb{R}^d such that E_i is *countably* m_i -rectifiable for each i, and $\nu = \sum_{i=1}^k q_i \nu_i$ with ν_i probability measures, $\nu_i \ll \mathcal{H}^{m_i}|_{E_i}$.

When ν probability measure, then $(q_1, ..., q_n)$ probability vector.

 $\rho = \sum_{i=1}^{k} q_i \rho_i$ probability measure in standard form. $E_Y = \{1, ..., k\}.$

Then:

$$\rho^{\otimes n} = \sum_{\mathbf{y}=(y_1,\ldots,y_n)\in E_Y^n} q_1^{N(1;\mathbf{y})}\cdots q_k^{N(k;\mathbf{y})}\rho_{y_1}\otimes\cdots\otimes\rho_{y_n}.$$

Each stratum $\Sigma_{\mathbf{y}} = E_{y_1} \times \cdots \times E_{y_n}$ has Hausdorff dimension $m(\mathbf{y}) = \sum_{i=1}^{n} m_{y_i}$.

The measure $\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}$ is absolutely continuous w.r.t. $\mu_{y_1} \otimes \cdots \otimes \mu_{y_n}$, which by the result above is the $m(\mathbf{y})$ -Hausdorff measure on $\Sigma_{\mathbf{y}}$.

くぼう くほう くほう

Asymptotic concentration

Because of the weak law of large numbers: $N(i; \mathbf{y})/n \rightarrow q_i$ in probability. So the set $A_{\eta}^{(n)}$ of $\mathbf{y} \in E_Y^n$ such that $|N(i; \mathbf{y})/n - q_i| < \eta$, for all $i \in E_Y$, is "typical": concentrates almost all the probability when n is big.

 $#A_{\eta}^{(n)} \approx \exp(nH_{\#}(q_1,...,q_k))$, cf. Cisiszár and Körner's strong typicality. Moreover,

$$\rho^{\otimes n} \approx \rho^{(n)} := \sum_{\mathbf{y} \in A^{(n)}} q_1^{N(1;\mathbf{y})} \cdots q_k^{N(k;\mathbf{y})} \underbrace{\rho_{y_1} \otimes \cdots \otimes \rho_{y_n}}_{\ll \mathcal{H}^{m(\mathbf{y})}|_{\Sigma_{\mathbf{y}}}}.$$

For $\mathbf{y} \in A_{\eta}^{(n)}$, it holds that $m(\mathbf{y}) \approx n \sum_{i=1}^{k} q_i m_i$, and that conditional entropy $H(X|Y) := \sum_{i=1}^{k} q_i H_{\mu_i}(\rho_i)$ is such that

$$\underbrace{\mu^{\otimes n}}_{\mathcal{H}^{m(\mathbf{u})}}(W^{(n)}_{\delta}(\rho)\cap\Sigma_{\mathbf{y}})\approx\exp(nH(X|Y)).$$

For a stratified measure as above, $\rho = \sum_{i=1}^{k} q_i \rho_i$ with ρ_i being m_i -rectifiable, Renyi's information dimension is $D = \sum_{i=1}^{k} q_i m_i$ (provided compacity; otherwise still open).

However, the *D*-dimensional entropy differs from $H_{\mu}(\rho)$.